"타니야마-시무라 추측(정리)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
12번째 줄: | 12번째 줄: | ||
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">예</h5> | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">예</h5> | ||
+ | |||
+ | |||
<math>y^2=x^3-4x^2+16</math> | <math>y^2=x^3-4x^2+16</math> | ||
<math>{\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2</math> | <math>{\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2</math> | ||
+ | |||
+ | <math>M_p</math> : number of points | ||
46번째 줄: | 50번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5> | ||
+ | |||
+ | * [[페르마의 마지막 정리]]<br> | ||
77번째 줄: | 83번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5> | ||
+ | |||
+ | * [http://www.jstor.org/stable/2324924 Number Theory as Gadfly]<br> | ||
+ | ** B. Mazur, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610 | ||
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= |
2009년 12월 11일 (금) 15:48 판
이 항목의 스프링노트 원문주소
개요
예
\(y^2=x^3-4x^2+16\)
\({\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2\)
\(M_p\) : number of points
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Taniyama-Shimura-Weil_conjecture
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Number Theory as Gadfly
- B. Mazur, The American Mathematical Monthly, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)