"타니야마-시무라 추측(정리)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">예</h5>
 
<h5 style="margin: 0px; line-height: 2em;">예</h5>
  
<math>E: y^2-y=x^3-x</math>
+
<math>E: y^2=x^3-4x^2+16</math>
  
 
<math>{\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2</math>
 
<math>{\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2</math>

2009년 12월 12일 (토) 15:44 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

\(E: y^2=x^3-4x^2+16\)

\({\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2\)

\(M_p=\#E(\mathbb{F}_p)\) number of points 

 

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문
  • Number Theory as Gadfly
    • B. Mazur, The American Mathematical Monthly, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그