"판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px;">타원곡선의 discriminant</h5>
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px;">타원곡선의 discriminant</h5>
  
*  <br><math>y^2=4x^3-g_2(\tau)x-g_3(\tau)</math> 로 주어진 타원곡선의 판별식은 다음과 같음<br><math>\Delta(\tau)=g_2(\tau)^3-27g_3(\tau)</math><br>
+
* <math>\tau\in \mathbb H</math> 에 대응되는 타원곡선 <math>y^2=4x^3-g_2(\tau)x-g_3(\tau)</math> 의 판별식은 다음과 같고,<br><math>g_2(\tau)^3-27g_3(\tau)</math><br> weight 12인 모듈라 형식이 됨.<br>
 +
*  이 함수의 <math>\tau=i\infty</math>에서의 푸리에 전개는<br><math>g_2(\tau)^3-27g_3(\tau)</math><br>
 +
 
 
* [[아이젠슈타인 급수(Eisenstein series)|<math>g_2, g_3</math>]]의 정의는 [[아이젠슈타인 급수(Eisenstein series)]] 참조<br>
 
* [[아이젠슈타인 급수(Eisenstein series)|<math>g_2, g_3</math>]]의 정의는 [[아이젠슈타인 급수(Eisenstein series)]] 참조<br>
  
10번째 줄: 12번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">무한곱 표현과 데데킨트 에타함수</h5>
 
 
* [[데데킨트 에타함수]]<br><math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})</math><br>
 
  
<math>\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots</math>
+
* [[데데킨트 에타함수]] <br><math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})</math><br> 의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, discriminant 함수와 같게 됨. 즉,<br><math>\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots</math><br>
  
 
 
 
 

2009년 7월 3일 (금) 15:53 판

타원곡선의 discriminant
  • \(\tau\in \mathbb H\) 에 대응되는 타원곡선 \(y^2=4x^3-g_2(\tau)x-g_3(\tau)\) 의 판별식은 다음과 같고,
    \(g_2(\tau)^3-27g_3(\tau)\)
    weight 12인 모듈라 형식이 됨.
  • 이 함수의 \(\tau=i\infty\)에서의 푸리에 전개는
    \(g_2(\tau)^3-27g_3(\tau)\)

 

 

 

무한곱 표현과 데데킨트 에타함수
  • 데데킨트 에타함수 
    \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\)
    의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, discriminant 함수와 같게 됨. 즉,
    \(\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)

 

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

역사

 

많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상