"판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)|판별식 (discriminant) 함수]]
 
* [[판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)|판별식 (discriminant) 함수]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px;">타원곡선의 discriminant</h5>
+
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px;">타원곡선의 discriminant==
  
 
* <math>\tau\in \mathbb H</math> 에 대응되는 타원곡선 <math>y^2=4x^3-g_2(\tau)x-g_3(\tau)</math> 의 판별식은 다음과 주어짐.<br><math>F(\tau)=g_2(\tau)^3-27g_3^2(\tau)</math><br>
 
* <math>\tau\in \mathbb H</math> 에 대응되는 타원곡선 <math>y^2=4x^3-g_2(\tau)x-g_3(\tau)</math> 의 판별식은 다음과 주어짐.<br><math>F(\tau)=g_2(\tau)^3-27g_3^2(\tau)</math><br>
20번째 줄: 20번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">정의</h5>
+
<h5 style="margin: 0px; line-height: 2em;">정의==
  
 
* <math>\Delta(\tau)=\frac{F(\tau)}{(2\pi)^{12}}= q-24q+252q^2\cdots</math> 를 discriminant 함수의 정의로 함.<br>
 
* <math>\Delta(\tau)=\frac{F(\tau)}{(2\pi)^{12}}= q-24q+252q^2\cdots</math> 를 discriminant 함수의 정의로 함.<br>
29번째 줄: 29번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">모듈라 성질</h5>
+
<h5 style="margin: 0px; line-height: 2em;">모듈라 성질==
  
 
*  위에서 이미 언급했듯이, weight 12인 모듈라 형식이 됨<br><math>\Delta \left( \frac {a\tau+b} {c\tau+d}\right) =  \left(c\tau+d\right)^{12} \Delta(\tau)</math><br>
 
*  위에서 이미 언급했듯이, weight 12인 모듈라 형식이 됨<br><math>\Delta \left( \frac {a\tau+b} {c\tau+d}\right) =  \left(c\tau+d\right)^{12} \Delta(\tau)</math><br>
37번째 줄: 37번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">무한곱 표현과 데데킨트 에타함수</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">무한곱 표현과 데데킨트 에타함수==
  
 
* [[데데킨트 에타함수]]<br><math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})</math><br> 의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, discriminant 함수와 같게 됨. 즉,<br><math>\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots</math><br>
 
* [[데데킨트 에타함수]]<br><math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})</math><br> 의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, discriminant 함수와 같게 됨. 즉,<br><math>\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots</math><br>
43번째 줄: 43번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">라마누잔의 타우 함수</h5>
+
<h5 style="margin: 0px; line-height: 2em;">라마누잔의 타우 함수==
  
 
*  discriminant 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,<br><math>\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n</math><br>
 
*  discriminant 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,<br><math>\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n</math><br>
51번째 줄: 51번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">라마누잔의 추측</h5>
+
<h5 style="margin: 0px; line-height: 2em;">라마누잔의 추측==
  
 
* <math>|\tau(p)| \leq 2p^{11/2}</math><br>
 
* <math>|\tau(p)| \leq 2p^{11/2}</math><br>
60번째 줄: 60번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">Lehmer의 추측</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Lehmer의 추측==
  
 
*  모든 <math>n\in \mathbb{N}</math>에 대하여 <math>\tau(n)\neq 0 </math>이다<br>
 
*  모든 <math>n\in \mathbb{N}</math>에 대하여 <math>\tau(n)\neq 0 </math>이다<br>
70번째 줄: 70번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">메모</h5>
+
<h5 style="margin: 0px; line-height: 2em;">메모==
  
 
*  Hecke’s theory of Hecke operators<br>
 
*  Hecke’s theory of Hecke operators<br>
80번째 줄: 80번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
  
 
* [[데데킨트 에타함수]]<br>
 
* [[데데킨트 에타함수]]<br>
91번째 줄: 91번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
105번째 줄: 105번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
  
 
* [http://dx.doi.org/10.1215/S0012-7094-47-01436-1 The vanishing of Ramanujan’s τ(n)]<br>
 
* [http://dx.doi.org/10.1215/S0012-7094-47-01436-1 The vanishing of Ramanujan’s τ(n)]<br>

2012년 11월 1일 (목) 13:14 판

이 항목의 스프링노트 원문주소==    
타원곡선의 discriminant==
  • \(\tau\in \mathbb H\) 에 대응되는 타원곡선 \(y^2=4x^3-g_2(\tau)x-g_3(\tau)\) 의 판별식은 다음과 주어짐.
    \(F(\tau)=g_2(\tau)^3-27g_3^2(\tau)\)
  • 정의에 따라 \(F\)는 weight 12인 모듈라 형식이 됨.
  • 또한 cusp 형식이 됨.
    \(g_2(i\infty)=\frac{4\pi^4}{3}\), \(g_3(i\infty)=\frac{8\pi^6}{27}\) 이므로,
    \(F(i\infty)=(\frac{4\pi^4}{3})^3-27(\frac{8\pi^6}{27})^2=0\)
   
정의==
  • \(\Delta(\tau)=\frac{F(\tau)}{(2\pi)^{12}}= q-24q+252q^2\cdots\) 를 discriminant 함수의 정의로 함.
  • \(\Delta(\tau)=\frac{1}{1728}(E_4^3-E_6^2)\) 로 표현가능
   
모듈라 성질==
  • 위에서 이미 언급했듯이, weight 12인 모듈라 형식이 됨
    \(\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau)\)
   
무한곱 표현과 데데킨트 에타함수==
  • 데데킨트 에타함수
    \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\)
    의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, discriminant 함수와 같게 됨. 즉,
    \(\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)
 
라마누잔의 타우 함수==
  • discriminant 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,
    \(\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n\)
   
라마누잔의 추측==
  • \(|\tau(p)| \leq 2p^{11/2}\)
  • 1974년 Deligne이 Weil추측을 증명함으로써 해결됨
   
Lehmer의 추측==    
메모==
  • Hecke’s theory of Hecke operators
  • Serre’s theory of modular l-adic Galois representations
  • Ramanujan-Petersson Conjectures
   
관련된 항목들==      
사전 형태의 자료==    
관련논문==