"프랙탈"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
16번째 줄: | 16번째 줄: | ||
정의 : 언제나 부분이 전체를 닮는 자기 유사성(self-similarity),순환성과 소수(小數)차원을 특징으로 갖는 형상 | 정의 : 언제나 부분이 전체를 닮는 자기 유사성(self-similarity),순환성과 소수(小數)차원을 특징으로 갖는 형상 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">예</h5> | |
− | + | * 칸토르 집<br> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
87번째 줄: | 59번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5> | ||
+ | |||
+ | * [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷]]<br> | ||
108번째 줄: | 82번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/Fractal | ||
* http://en.wikipedia.org/wiki/Iterated_function_system | * http://en.wikipedia.org/wiki/Iterated_function_system | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ |
2010년 6월 5일 (토) 07:31 판
이 항목의 스프링노트 원문주소
개요
유한한 영역 - 무한한 경계
정의 : 언제나 부분이 전체를 닮는 자기 유사성(self-similarity),순환성과 소수(小數)차원을 특징으로 갖는 형상
예
- 칸토르 집
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Fractal
- http://en.wikipedia.org/wiki/Iterated_function_system
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- Getting Acquainted with Fractals
- Gilbert Helmberg, 2007
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)