"프랙탈"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[프랙탈]]<br>
 
* [[프랙탈]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
*  다음 성질들을 가지는 도형 또는 형상<br>
 
*  다음 성질들을 가지는 도형 또는 형상<br>
15번째 줄: 15번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">예</h5>
+
<h5 style="line-height: 2em; margin: 0px;">예==
  
 
*  칸토르 집합<br>
 
*  칸토르 집합<br>
29번째 줄: 29번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">생성방법</h5>
+
<h5 style="line-height: 2em; margin: 0px;">생성방법==
  
 
*  iterative function system<br>
 
*  iterative function system<br>
38번째 줄: 38번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">예 : 줄리아 집합</h5>
+
<h5 style="line-height: 2em; margin: 0px;">예 : 줄리아 집합==
  
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 다음과 같은 점화식(iteration)을 정의하자. <br><math>z_0=z</math><br><math>z_{n+1} =  z_n^2 + c</math><br>
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 다음과 같은 점화식(iteration)을 정의하자. <br><math>z_0=z</math><br><math>z_{n+1} =  z_n^2 + c</math><br>
48번째 줄: 48번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">만델브로트 집합</h5>
+
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">만델브로트 집합==
  
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 줄리아 집합에서와 같은 점화식을 정의<br><math>z_{n+1} =  z_n^2 + c</math><br>
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 줄리아 집합에서와 같은 점화식을 정의<br><math>z_{n+1} =  z_n^2 + c</math><br>
59번째 줄: 59번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실==
  
 
 
 
 
70번째 줄: 70번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
  
 
 
 
 
82번째 줄: 82번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
  
 
 
 
 
88번째 줄: 88번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
  
 
* [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷]]<br>
 
* [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷]]<br>
97번째 줄: 97번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
110번째 줄: 110번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%ED%94%84%EB%9E%99%ED%83%88 http://ko.wikipedia.org/wiki/프랙탈]
 
* [http://ko.wikipedia.org/wiki/%ED%94%84%EB%9E%99%ED%83%88 http://ko.wikipedia.org/wiki/프랙탈]
127번째 줄: 127번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
137번째 줄: 137번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
  
 
* [http://www.amazon.com/Getting-Acquainted-Fractals-Gilbert-Helmberg/dp/3110190923 Getting Acquainted with Fractals]<br>
 
* [http://www.amazon.com/Getting-Acquainted-Fractals-Gilbert-Helmberg/dp/3110190923 Getting Acquainted with Fractals]<br>
153번째 줄: 153번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
164번째 줄: 164번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그==
  
 
* http://www.youtube.com/watch?v=iLinxe6ReJI
 
* http://www.youtube.com/watch?v=iLinxe6ReJI

2012년 11월 1일 (목) 13:17 판

이 항목의 스프링노트 원문주소==    
개요==
  • 다음 성질들을 가지는 도형 또는 형상
    • 소수차원
    • 부분이 전체를 닮는 자기 유사성(self-similarity)
       
 
예==    
생성방법==
  • iterative function system
  • escape time 프랙탈
   
예 : 줄리아 집합==
  • 복소수 \(c\in\mathbb{C}\)에 대하여 다음과 같은 점화식(iteration)을 정의하자. 
    \(z_0=z\)
    \(z_{n+1} = z_n^2 + c\)
  • 이 점화식에 의한 의한 궤도가 유계가 되는 복소수 \(z\in\mathbb{C}\) 들이 이루는 집합의 경계를 복소수 \(c\in\mathbb{C}\)에 대한 줄리아 집합(Julia set)이라 한다
   
만델브로트 집합==
  • 복소수 \(c\in\mathbb{C}\)에 대하여 줄리아 집합에서와 같은 점화식을 정의
    \(z_{n+1} = z_n^2 + c\)
  • 이 점화식에 의한 \(z_0=0\)의 궤도가 유계가 되는 복소수 \(c\in\mathbb{C}\)의 집합을 만델브로 집합이라 한다
  • 줄리아 집합이 연결집합이 되도록 하는 복소수 \(c\in\mathbb{C}\)
   
재미있는 사실==      
역사==      
메모==    
관련된 항목들==    
수학용어번역==    
사전 형태의 자료==    
관련논문==    
관련도서==    
관련기사==    
블로그==