"프로베니우스와 체보타레프 밀도(density) 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
39번째 줄: 39번째 줄:
 
<h5>밀도 정리를 통한 디리클레 정리의 유도</h5>
 
<h5>밀도 정리를 통한 디리클레 정리의 유도</h5>
  
<math>\zeta_n</math>primitive n-th 단위근이라 하자.
+
<math>\zeta_n</math>primitive n-단위근이고 <math>K = \mathbb Q(\zeta_n)</math>라 하자.
  
<math>\text{Gal}(K/F)</math>
+
<math>\wp \subset K</math> 는 소수 p 를 나누는 unramified prime ideal이라 하자. 
  
<math>\mathbb Q \subset \mathbb Q(\zeta_n)</math> , <math>\wp</math> 는 unramified prime ideal over p 를 가정한다.
+
소수 p에 대한 아틴 심볼은  <math>\sigma_p(\alpha)=\alpha ^p \pmod \wp</math> 를 만족시키는 <math>\sigma_p \in \text{Gal}(K/\mathbb Q)</math> 로 정의된다.
  
이제 소수 p에 대한 아틴 심볼은  <math>\sigma_p(\alpha)=\alpha ^p \pmod \wp</math> 를 만족시키는 로 정의된다.
+
p의 분해는 아틴 심볼의 cycle 구조를 통해서 알 수 있다.
 
 
체보타레프 정리에 의해 p의 분해는 아틴 심볼의 cycle 구조를 통해서 알 수 있다.
 
  
 
한편 <math>\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b</math> 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존한다.
 
한편 <math>\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b</math> 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존한다.
  
따라서 의해 디리클레 정리가 증명된다.
+
따라서 체보타레프 정리에 의해 디리클레 정리가 증명된다.
  
 
 
 
 

2009년 11월 26일 (목) 18:38 판

이 항목의 스프링노트 원문주소
  •  

 

 

간단한 소개
  • density 정리란 prime ideal (또는 주어진 다항식 mod p) 의 분해와  프로베니우스 원소(혹은 아틴 심볼)의 cycle 구조와의 관계와 그 비율에 관한 정리.
  • 갈루아 체확장 L/K 

 

 

프로베니우스의 density 정리(1880)
  • prime ideal과 cycle type의 관계

 

 

 

체보타레프의 density 정리 (1922)
  • prime ideal과 conjugacy class의 관계
    • 프로베니우스의 정리보다 더 강력함
    • There are cases where cycle types are same but the conjugacy classes are different

 

 

밀도 정리를 통한 디리클레 정리의 유도

\(\zeta_n\)는 primitive n-단위근이고 \(K = \mathbb Q(\zeta_n)\)라 하자.

\(\wp \subset K\) 는 소수 p 를 나누는 unramified prime ideal이라 하자. 

소수 p에 대한 아틴 심볼은  \(\sigma_p(\alpha)=\alpha ^p \pmod \wp\) 를 만족시키는 \(\sigma_p \in \text{Gal}(K/\mathbb Q)\) 로 정의된다.

p의 분해는 아틴 심볼의 cycle 구조를 통해서 알 수 있다.

한편 \(\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b\) 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존한다.

따라서 체보타레프 정리에 의해 디리클레 정리가 증명된다.

 

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

표준적인 도서 및 추천도서

 

 

위키링크

 

참고할만한 자료