"Nested radicals"의 두 판 사이의 차이
8번째 줄: | 8번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
+ | |||
+ | <math>\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}=\varphi=\frac{1+\sqrt5}{2}=1.61803398874989\cdots</math> | ||
+ | |||
+ | * [[황금비]] | ||
13번째 줄: | 17번째 줄: | ||
<math>\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{5+\sqrt{6+\cdots}}}}}}=1.75793275661800453270881963821820816125\cdots</math> | <math>\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{5+\sqrt{6+\cdots}}}}}}=1.75793275661800453270881963821820816125\cdots</math> | ||
− | + | ||
− | |||
− | |||
66번째 줄: | 68번째 줄: | ||
− | + | <h5>메모</h5> | |
− | + | * [http://www.dgp.toronto.edu/%7Emjmcguff/math/nestedRadicals.pdf http://www.dgp.toronto.edu/~mjmcguff/math/nestedRadicals.pdf] | |
74번째 줄: | 76번째 줄: | ||
− | <h5>관련된 | + | <h5>관련된 항목들</h5> |
− | + | * [[연분수와 유리수 근사|연분수]] | |
− | |||
− | |||
− | |||
− | |||
100번째 줄: | 98번째 줄: | ||
− | <h5> | + | |
+ | |||
+ | <h5>사전형태의 참고자료</h5> | ||
* http://en.wikipedia.org/wiki/Nested_radical | * http://en.wikipedia.org/wiki/Nested_radical | ||
+ | * http://mathworld.wolfram.com/NestedRadical.html | ||
2009년 11월 29일 (일) 15:20 판
이 항목의 스프링노트 원문주소
개요
\(\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}=\varphi=\frac{1+\sqrt5}{2}=1.61803398874989\cdots\)
\(\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{5+\sqrt{6+\cdots}}}}}}=1.75793275661800453270881963821820816125\cdots\)
라마누잔이 제시한 문제
- \(\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\cdots}}}}} = 3\)
- 다음 수열의 극한
\(1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots\)
증명
먼저 수렴성을 증명하자. 다음과 같이 정의된 수열
\(1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots\) 은 위로 유계이다.
\(\sqrt{1+2 \sqrt{1+3\sqrt{1+\cdots+ (n-1)\sqrt{1+n} }}} \leq \sqrt{1+2 \sqrt{1+3\sqrt{1+\cdots+ (n-1)\sqrt{1+n(n+2)} }}}=3\)
\(n=\sqrt{1+(n-1)(n+1)}\)을 이용
\(\begin{eqnarray*}3 &=& \sqrt{1+2\cdot4}\\ &=& \sqrt{1+2\sqrt{1+3\cdot5}}\\ &=& \sqrt{1+2\sqrt{1+3\sqrt{1+4\cdot6}}}\\ &=& \cdots\end{eqnarray*}\)
수열의 크기 변화를 나타내는 그래프
\(1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots\)
[/pages/2529712/attachments/2586699 nested_radicals.jpg]
매쓰매티카 코드
- f[n_][x_]:=Sqrt[1+n*x]
a[1][x_]:=x
a[n_][x_]:=Composition[a[n-1],f[n]][x]
Table[a[n][x],{n,1,6}]
DiscretePlot[a[n][1],{n,1,50}]
- 결과
\(\left\{x,\sqrt{1+2 x},\sqrt{1+2 \sqrt{1+3 x}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 x}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 x}}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 x}}}}}\right\}\)
메모
관련된 항목들
표준적인 도서 및 추천도서
- Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., 2000.
관련논문
- Ramanujan, S. Question No. 298. J. Indian Math. Soc. 1911.
사전형태의 참고자료