"힐베르트 부호"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
 
:<math>(a,b)=\begin{cases}1,&\mbox{ if }z^2=ax^2+by^2\mbox{ has a non-zero solution }(x,y,z)\in K^3;\\-1,&\mbox{ if  not.}\end{cases}</math>
 
:<math>(a,b)=\begin{cases}1,&\mbox{ if }z^2=ax^2+by^2\mbox{ has a non-zero solution }(x,y,z)\in K^3;\\-1,&\mbox{ if  not.}\end{cases}</math>
  
 +
 +
==성질==
 +
* 다음을 만족한다
 +
:<math>(u^2,v)=1</math>
 +
:<math>(u,v)=(v,u)</math>
 +
:<math>(u_1u_2,v)=(u_1,v)(u_2,v)</math>
 +
:<math>(u,1-u)=1</math>
  
  

2013년 1월 10일 (목) 01:09 판

정의

  • K : local field

\[(a,b)=\begin{cases}1,&\mbox{ if }z^2=ax^2+by^2\mbox{ has a non-zero solution }(x,y,z)\in K^3;\\-1,&\mbox{ if not.}\end{cases}\]


성질

  • 다음을 만족한다

\[(u^2,v)=1\] \[(u,v)=(v,u)\] \[(u_1u_2,v)=(u_1,v)(u_2,v)\] \[(u,1-u)=1\]


유리수 체에서의 힐베르트 부호

  • $p=\infty$ 일 때,

\[(a,b)_{\infty}= \begin{cases} 1,&\mbox{ if }a>0 \mbox{ or } b>0 \\ -1,& \mbox{ if }a<0 \mbox{ and } b<0 \end{cases} \]

  • 홀수인 소수 p에 대하여, \(a = p^{\alpha} u\) and \(b = p^{\beta} v\)이면

\[(a,b)_p = (-1)^{\alpha\beta\epsilon(p)} \left(\frac{u}{p}\right)^\beta \left(\frac{v}{p}\right)^\alpha\] 여기서 \(\epsilon(p) = (p-1)/2\)

  • $p=2$일 경우, \(a = 2^\alpha u\), \(b = 2^\beta v\)라 두면

\[(a,b)_2 = (-1)^{\epsilon(u)\epsilon(v) + \alpha\omega(v) + \beta\omega(u)}\] 여기서 \(\omega(x) = (x^2-1)/8\).

  • 상호법칙

\[\prod_v (a,b)_v = 1\]


사전 형태의 자료