"정규 분포"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
53번째 줄: 53번째 줄:
 
** 드무아브르가 18세기에 발견한 것은 이항분포에서 확률이 1/2인 경우
 
** 드무아브르가 18세기에 발견한 것은 이항분포에서 확률이 1/2인 경우
 
** [[드무아브르-라플라스 중심극한정리]] 의 유도는 해당 항목을 참조.
 
** [[드무아브르-라플라스 중심극한정리]] 의 유도는 해당 항목을 참조.
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
   
 
   

2013년 1월 14일 (월) 19:02 판

개요

  • 고교 과정의 통계에서는 정규분포의 기본적인 성질과 정규분포표 읽는 방법을 배움.
  • 평균이 \(\mu\), 표준편차가 \(\sigma\)인 정규분포의 \(N(\mu,\sigma^2)\)의 확률밀도함수, 즉 가우시안은 다음과 같음이 알려져 있음.\[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\]
  • 아래에서는 이 확률밀도함수가 어떻게 해서 얻어지는가를 보임.(기본적으로는 가우스의 증명)
  • 가우시안의 형태를 얻는 또다른 방법으로 드무아브르-라플라스 중심극한정리 를 참조.

'오차의 법칙'을 통한 가우시안의 유도

  • 오차 = 관측하려는 실제값 - 관측에서 얻어지는 값
  • 오차의 분포를 기술하는 확률밀도함수 \(\Phi\)는 다음과 같은 성질을 만족시켜야 함.
    1) \(\Phi(x)=\Phi(-x)\)
    2)작은 오차가 큰 오차보다 더 나타날 확률이 커야한다. 그리고 매우 큰 오차는 나타날 확률이 매우 작아야 한다.
    3) \(\int_{-\infty}^{\infty} \Phi(x)\,dx=1\)
    4) 관측하려는 실제값이 \(\mu\) 이고, n 번의 관측을 통해 \(x_ 1, x_ 2, \cdots, x_n\) 을 얻을 확률 \(\Phi(\mu-x_ 1)\Phi(\mu-x_ 2)\cdots\Phi(\mu-x_n)\)의 최대값은 \(\mu=\frac{x_ 1+x_ 2+ \cdots+ x_n}{n}\)에서 얻어진다.
  • 4번 조건을 가우스의 산술평균의 법칙이라 부르며, 관측에 있어 실제값이 될 개연성이 가장 높은 값은 관측된 값들의 산술평균이라는 가정을 하는 것임.


(정리) 가우스

이 조건들을 만족시키는 확률밀도함수는 \(\Phi(x)=\frac{h}{\sqrt{\pi}}e^{-h^2x^2}\) 형태로 주어진다. 여기서 \(h\)는 확률의 정확도와 관련된 값임. (실제로는 표준편차와 연관되는 값)


(증명)

\(n=3\)인 경우에 4번 조건을 만족시키는 함수를 찾아보자.

\(\Phi(x-x_ 1)\Phi(x-x_ 2)\Phi(x-x_ 3)\)의 최대값은 \(x=\frac{x_ 1+x_ 2+ x_ 3}{3}\) 에서 얻어진다.

따라서 \(\ln \Phi(x-x_ 1)\Phi(x-x_ 2)\Phi(x-x_ 3)\) 의 최대값도 \(x=\frac{x_ 1+x_ 2+ x_ 3}{3}\) 에서 얻어진다.

미분적분학의 결과에 의해, \(x=\frac{x_ 1+x_ 2+ x_ 3}{3}\) 이면, \(\frac{\Phi'(x-x_ 1)}{\Phi(x-x_ 1)}+\frac{\Phi'(x-x_ 2)}{\Phi(x-x_ 2)}+\frac{\Phi'(x-x_ 3)}{\Phi(x-x_ 3)}=0\) 이어야 한다.

\(F(x)=\frac{\Phi'(x)}{\Phi(x)}\) 으로 두자.

\(x+y+z=0\) 이면, \(F(x)+F(y)+F(z)=0\) 이어야 한다.

1번 조건에 의해, \(F\) 는 기함수이다.

따라서 모든 \(x,y\) 에 의해서, \(F(x+y)=F(x)+F(y)\) 가 성립한다. 그러므로 \(F(x)=Ax\) 형태로 쓸수 있다.

이제 적당한 상수 \(B, h\) 에 의해 \(\Phi(x)=Be^{-h^2x^2}\) 꼴로 쓸 수 있다.

모든 \(n\)에 대하여 4번조건이 만족됨은 쉽게 확인할 수 있다. (증명끝)


역사

  • 중심극한정리는 여러 과정을 거쳐 발전
  • 이항분포의 중심극한 정리
    • 라플라스의 19세기 초기 버전

확률변수 X가 이항분포 B(n,p)를 따를 때, n이 충분히 크면 X의 분포는 근사적으로 정규분포 N(np,npq)를 따른다



메모



재미있는 사실

  • 정규분포와 중심극한정리에 대한 이해는 교양인이 알아야 할 수학 주제의 하나나
  • Galton's quincunx
    • 정규분포의 밀도함수 형태를 물리적으로 얻을 수 있는 장치.

[[Media:|Media:]]

  • 예전 독일 마르크화에는 가우스의 발견을 기려 정규분포곡선이 새겨짐
    1950958-Gauss-detail2.jpg



관련된 항목들

 

 

관련도서

 

 

사전형태의 자료

 

 

 

관련기사

 

 

블로그

 

 

이미지 검색

 

동영상