"라플라스 변환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[라플라스 변환]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
46번째 줄: 38번째 줄:
 
==예==
 
==예==
  
<math>\left(\frac{t^ne^t}{n!}\right)'=\frac{t^{n-1}e^t}{(n-1)!}\right+\frac{t^ne^t}{n!}\right</math> 로부터 <math>\mathcal{L}\left\{\frac{t^{n-1}e^t}{(n-1)!}\right\} = (s-1)\cdot\mathcal{L} \left\{ \frac{t^ne^t}{n!}\right\}</math>
+
<math>\left(\frac{t^ne^t}{n!}\right)'=\frac{t^{n-1}e^t}{(n-1)!}+\frac{t^ne^t}{n!}</math> 로부터 <math>\mathcal{L}\left\{\frac{t^{n-1}e^t}{(n-1)!}\right\} = (s-1)\cdot\mathcal{L} \left\{ \frac{t^ne^t}{n!}\right\}</math>
  
 
<math>\mathcal{L}\left\{e^t\right\} = \frac{1}{s-1}</math>
 
<math>\mathcal{L}\left\{e^t\right\} = \frac{1}{s-1}</math>
113번째 줄: 105번째 줄:
 
 
 
 
  
 
 
 
==수학용어번역==
 
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
  
 
 
 
 
129번째 줄: 111번째 줄:
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxekVyZUNKR2RGY0U/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxekVyZUNKR2RGY0U/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
 
 
 
147번째 줄: 121번째 줄:
 
* [http://en.wikipedia.org/wiki/Laplace%E2%80%93Stieltjes_transform http://en.wikipedia.org/wiki/Laplace–Stieltjes_transform]
 
* [http://en.wikipedia.org/wiki/Laplace%E2%80%93Stieltjes_transform http://en.wikipedia.org/wiki/Laplace–Stieltjes_transform]
 
* [http://en.wikipedia.org/wiki/Moment_%28mathematics%29 http://en.wikipedia.org/wiki/Moment_(mathematics)]
 
* [http://en.wikipedia.org/wiki/Moment_%28mathematics%29 http://en.wikipedia.org/wiki/Moment_(mathematics)]
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
==관련논문==
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
 
 
 
 

2013년 8월 29일 (목) 14:46 판

개요

  • 푸리에 변환의 변형
  • 어떤 미분방정식들의 해를 대수적 조작을 통해 얻을 수 있게 해주는 변환
  • 라플라스 변환을 미분방정식에 응용한 사람은 Oliver Heaviside http://en.wikipedia.org/wiki/Oliver_Heaviside  이다
  • operational calculus 또는 Heaviside calculus 의 도구

 

 

정의

  • 함수 \(f(t)\)에 대한 라플라스 변환을 다음과 같이 정의함\[F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\]

 

 

성질

  • 함수 \(f\)에 대한 도함수의 라플라스 변환은 다음과 같다\[\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)\]

 

(정리)

\(f\)가 유계이고, \(t\geq 0\)에서 조각적 연속(piecewise continuous)라 하자.

\(\mathfrak{R}(s)\geq 0\)에서 정의된 함수 \(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\) 가 \(\mathfrak{R}(s)\geq 0\)에서 해석함수로 확장되면,

\(\int_0^{\infty} f(t) \,dt\)이 존재하고, \(F(0) = \int_0^{\infty} f(t) \,dt\)가 성립한다. 

 

 

\(\left(\frac{t^ne^t}{n!}\right)'=\frac{t^{n-1}e^t}{(n-1)!}+\frac{t^ne^t}{n!}\) 로부터 \(\mathcal{L}\left\{\frac{t^{n-1}e^t}{(n-1)!}\right\} = (s-1)\cdot\mathcal{L} \left\{ \frac{t^ne^t}{n!}\right\}\)

\(\mathcal{L}\left\{e^t\right\} = \frac{1}{s-1}\)

\(\mathcal{L}\left\{t e^t\right\} = \frac{1}{(s-1)^2}\)

 

\(\mathcal{L}\left\{\frac{t^2 e^t}{2!}\right\} = \frac{1}{(s-1)^3}\)

 

\(\mathcal{L}\left\{\frac{t^3 e^t}{3!}\right\} = \frac{1}{(s-1)^4}\)

...

 

 

상수계수 미분방정식에의 응용

  • \(y''(t)-2 y'(t)+y(t)=e^t\)
  • 양변에 라플라스 변환을 취하면,\[s^2 Y(s)+Y(s)-2 (s Y(s)-1)-s+1=\frac{1}{s-1}\], 여기서 \(Y(s)=\mathcal{L} \left\{ f(t) \right\}\).
  • \(Y(s)=\frac{1}{s-1}-\frac{2}{(s-1)^2}+\frac{1}{(s-1)^3}\)
  • \(y(t)=e^t-2t e^t+\frac{t^2}{2}e^t\) 는 주어진 미분방정식의 해가 된다

 

 

멜린변환과의 관계

  • 푸리에 변환 항목 참조\[\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}\]
  • 멜린변환에서 \(x=e^{-t}\)로 변수를 치환하면, 라플라스 변환을 얻는다\[\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt\]

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 


 

매스매티카 파일 및 계산 리소스


 

사전 형태의 자료