"Q-이항계수 (가우스 다항식)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
+ | |||
+ | * [[q-이항계수 (가우스 다항식)|q-이항계수(가우스 다항식)]]<br> | ||
5번째 줄: | 7번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> |
* 이항계수의 q-analogue<br> | * 이항계수의 q-analogue<br> | ||
18번째 줄: | 20번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">양자평면</h5> |
* 세 변수 <math>x,y,q</math> 사이에 다음과 같은 관계를 정의<br><math>xy=qyx,xq=qx,yq=qy</math><br> | * 세 변수 <math>x,y,q</math> 사이에 다음과 같은 관계를 정의<br><math>xy=qyx,xq=qx,yq=qy</math><br> | ||
30번째 줄: | 32번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-이항계수</h5> |
− | * 정의<br><math>{n \choose r}_q={{[n]_q!} \over {[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}</math><br> | + | * 정의<br><math>{n \choose r}_q={{[n]_q!} \over {[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}</math><br> 풀어쓰면 다음과 같다<br><math>{n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}</math><br> |
* 예<br><math>{4 \choose 1}_q=1+q+q^2+q^3</math><br><math>{4 \choose 2}_q=(1+q+q^2)(1+q^2)=1+q+2q^2+q^3+q^4</math><br><math>{5 \choose 1}_q=1+q+q^2+q^3+q^4</math><br><math>{5 \choose 2}_q=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)</math><br> | * 예<br><math>{4 \choose 1}_q=1+q+q^2+q^3</math><br><math>{4 \choose 2}_q=(1+q+q^2)(1+q^2)=1+q+2q^2+q^3+q^4</math><br><math>{5 \choose 1}_q=1+q+q^2+q^3+q^4</math><br><math>{5 \choose 2}_q=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)</math><br> | ||
* <math>n</math>이 작을 경우에 대한 [[q-이항계수의 목록]] 참조 | * <math>n</math>이 작을 경우에 대한 [[q-이항계수의 목록]] 참조 | ||
40번째 줄: | 42번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">점화식</h5> |
* [[이항계수와 조합]]에서 얻은 식의 q-analogue<br><math>{n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q</math><br> | * [[이항계수와 조합]]에서 얻은 식의 q-analogue<br><math>{n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q</math><br> | ||
51번째 줄: | 53번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5> |
62번째 줄: | 64번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> |
74번째 줄: | 76번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5> |
80번째 줄: | 82번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5> |
* [[이항계수와 조합]]<br> | * [[이항계수와 조합]]<br> | ||
88번째 줄: | 90번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
99번째 줄: | 101번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
105번째 줄: | 107번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
112번째 줄: | 114번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
121번째 줄: | 123번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
135번째 줄: | 137번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
146번째 줄: | 148번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> |
2011년 5월 13일 (금) 04:00 판
이 항목의 스프링노트 원문주소
개요
- 이항계수의 q-analogue
- 가우스 다항식(Gaussian polynomial)으로 불리기도 한다
양자평면
- 세 변수 \(x,y,q\) 사이에 다음과 같은 관계를 정의
\(xy=qyx,xq=qx,yq=qy\) - 거듭제곱의 전개
\((x+y)=x+y\)
\((x+y)^2=x^2+(1+q)xy+y^2\)
\((x+y)^3=x^3+(1+q+q^2)x^2y+(1+q+q^2)xy^2+y^3\)
\((x+y)^4=x^4+(1+q+q^2+q^3)x^3y+\left(1+q^2\right) \left(1+q+q^2\right)x^2y^2+(1+q+q^2+q^3)xy^3+y^4\) - 여기서 등장하는 계수들을 q-이항계수로 정의하고자 한다
q-이항계수
- 정의
\({n \choose r}_q={{[n]_q!} \over {[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}\)
풀어쓰면 다음과 같다
\({n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}\) - 예
\({4 \choose 1}_q=1+q+q^2+q^3\)
\({4 \choose 2}_q=(1+q+q^2)(1+q^2)=1+q+2q^2+q^3+q^4\)
\({5 \choose 1}_q=1+q+q^2+q^3+q^4\)
\({5 \choose 2}_q=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\) - \(n\)이 작을 경우에 대한 q-이항계수의 목록 참조
점화식
- 이항계수와 조합에서 얻은 식의 q-analogue
\({n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q\) - 예 q-이항계수의 목록 항목 참조
\({4\choose 1}_q+q^2{4\choose 2}_q={5\choose 2}_q\)
\(1+q+q^2+q^3+q^2(1+q+2q^2+q^3+q^4)=1+q+q^2+q^3+q^4+q^2(1+q+q^2+q^3+q^4)=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)