"타원 모듈라 λ-함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
15번째 줄: 15번째 줄:
 
:<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math>
 
:<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math>
 
:<math>\lambda(\tau)=k^2(\tau)=\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)}</math><br>
 
:<math>\lambda(\tau)=k^2(\tau)=\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)}</math><br>
 +
* 푸리에 전개
 +
$$
 +
\lambda(\tau)=16 q - 128 q^2 + 704 q^3 - 3072 q^4 + 11488 q^5 - 38400 q^6, \quad q=e^{\pi i \tau}
 +
$$
  
 
 
  
 
 
 
 
49번째 줄: 52번째 줄:
  
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)]]<br>
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)]]<br>
:<math>J(\tau)=\frac{4}{27}\frac{(1-\lambda+\lambda^2)^3}{\lambda^2(1-\lambda)^2}</math>
+
:<math>j(\tau)=256\frac{\left(1-\lambda (\tau )+\lambda (\tau )^2\right)^3}{(1-\lambda (\tau ))^2 \lambda (\tau )^2}</math>
  
 
(증명)
 
(증명)
 
+
$k=e^{\frac{2 i \pi }{3}}$로 두고, 다음과 같은 함수를 생각하자.
다음과 같은 함수를 생각하자. 
+
$$
:<math>(\lambda(\tau)+1)( {1\over\lambda(\tau)}+1)({1\over{1-\lambda(\tau)}}+1)(  1-\lambda(\tau)+1)( {\lambda(\tau)\over{\lambda(\tau)-1}}+1)( {{\lambda(\tau)-1}\over\lambda(\tau)})</math>
+
(\lambda(\tau)+k)( {1\over\lambda(\tau)}+k)({1\over{1-\lambda(\tau)}}+k)(  1-\lambda(\tau)+k)( {\lambda(\tau)\over{\lambda(\tau)-1}}+k)( {{\lambda(\tau)-1}\over\lambda(\tau)}+k)=-\frac{\left(1-\lambda (\tau )+\lambda (\tau )^2\right)^3}{(1-\lambda (\tau ))^2 \lambda (\tau )^2}
 
+
$$
 
모듈라군에 의한 변환에서 얻은 결과로 이 함수는 [[모듈라 군(modular group)]]에 의하여 불변임을 알 수 있다.
 
모듈라군에 의한 변환에서 얻은 결과로 이 함수는 [[모듈라 군(modular group)]]에 의하여 불변임을 알 수 있다.
 
 
 
 
 
 
  
 
 
 
 
97번째 줄: 96번째 줄:
  
 
* [[타원적분의 singular value k]]
 
* [[타원적분의 singular value k]]
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]
+
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)]]
 +
* [[르장드르의 타원곡선 모임]]
 +
 
 +
 
  
 +
==사전 형태의 자료==
 +
* http://en.wikipedia.org/wiki/Modular_lambda_function
  
 
 
 
 

2013년 4월 14일 (일) 07:44 판

개요

  • \(\lambda(\tau)=k^2(\tau)\) 는 타원적분의 modulus라고 불리며, 아벨, 자코비와 후학들(에르미트)에 의해 많이 연구됨
  • 가장 기본적인 모듈라함수로 여겨졌으나, 나중에 \(j\)-불변량(타원 모듈라 j-함수 (elliptic modular function, j-invariant))에 그 자리를 내줌
  • level 2 인 congruence 모듈라 군(modular group) \(\Gamma(2)\)에 대한 모듈라 함수가 됨\[\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}\]

 

 

세타함수와의 관계

\[k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\] \[\lambda(\tau)=k^2(\tau)=\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)}\]

  • 푸리에 전개

$$ \lambda(\tau)=16 q - 128 q^2 + 704 q^3 - 3072 q^4 + 11488 q^5 - 38400 q^6, \quad q=e^{\pi i \tau} $$


 

바이어슈트라스 타원함수와의 관계

\[\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\]

  • \(\tau=\omega_2/\omega_1\) 로 두면, 다음을 얻는다

\[\lambda(\tau)=\frac{e_3-e_2}{e_1-e_2}\]
여기서 \[e_1=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)\]\[e_2=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)\]\[e_3=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)\]

  • \(e_1,e_2,e_3,\infty\) 네 점의 교차비로 이해할 수 있음
  • 사영기하학과 교차비 항목 참조
  • \(z_4=\infty\) 인 경우\[(z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}\]

 

 

모듈라군에 의한 변환

  • 모듈라 군(modular group)에 의한 변환
  • 생성원\[S=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \]
  • \(T: \tau \to \tau+1\)에 의한 변화\[\begin{pmatrix} \omega'_2 \\ \omega'_1 \end{pmatrix}=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} =\begin{pmatrix} \omega_1+\omega_2 \\ \omega_1 \end{pmatrix}\]\[e_1'=\wp(\frac{\omega_1}{2})=e_1\]\[e_2'=\wp(\frac{\omega_1+\omega_2}{2})=e_3\]\[e_3'=\wp(\frac{\omega_2}{2})=e_2\]\[\lambda(\tau+1)=\frac{e_2-e_3}{e_1-e_3}=\frac{\lambda(\tau)}{\lambda(\tau)-1}\]
  • \(S: \tau \to -\frac{1}{\tau}\)에 의한 변화\[\begin{pmatrix} \omega'_2 \\ \omega'_1 \end{pmatrix}=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} =\begin{pmatrix} -\omega_1 \\ \omega_2 \end{pmatrix}\]\[e_1'=\wp(\frac{\omega_2}{2})=e_2\]\[e_2'=\wp(\frac{\omega_1}{2})=e_1\]\[e_3'=\wp(\frac{\omega_1+\omega_2}{2})=e_3\]\[\lambda(-\frac{1}{\tau})=\frac{e_3-e_1}{e_2-e_1}=1-\lambda(\tau)\]
  • 따라서 모듈라 군(modular group)에 의해, 다음과 같은 값을 취할 수 있게 된다

\[ \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}\]

 

타원 모듈라 j-함수와의 관계

\[j(\tau)=256\frac{\left(1-\lambda (\tau )+\lambda (\tau )^2\right)^3}{(1-\lambda (\tau ))^2 \lambda (\tau )^2}\]

(증명) $k=e^{\frac{2 i \pi }{3}}$로 두고, 다음과 같은 함수를 생각하자. $$ (\lambda(\tau)+k)( {1\over\lambda(\tau)}+k)({1\over{1-\lambda(\tau)}}+k)( 1-\lambda(\tau)+k)( {\lambda(\tau)\over{\lambda(\tau)-1}}+k)( {{\lambda(\tau)-1}\over\lambda(\tau)}+k)=-\frac{\left(1-\lambda (\tau )+\lambda (\tau )^2\right)^3}{(1-\lambda (\tau ))^2 \lambda (\tau )^2} $$ 모듈라군에 의한 변환에서 얻은 결과로 이 함수는 모듈라 군(modular group)에 의하여 불변임을 알 수 있다.

 

special values

\(\lambda(i\infty)=0\)

\(\lambda(0)=1\)

\(\lambda(1)=\infty\)

\(\lambda(\sqrt{-1})=\frac{1}{2}\)

\(\lambda(\frac {-1+\sqrt{-3}}{2}), \lambda(\frac {1+\sqrt{-3}}{2})\) 는 \(1-\lambda+\lambda^2=0\) 의 두 해

 

 

역사

 

 

메모

 

 

관련된 항목들


사전 형태의 자료

 

관련도서

  • [AHL1979]Lars Ahlfors, Complex Analysis , 3rd edition, McGraw-Hill, 1979
    • 7.3.4를 참고