"리만 곡면의 주기 행렬과 겹선형 관계 (bilinear relation)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
+ | ==개요== | ||
+ | * $X$ : 종수가 $g$인 컴팩트 리만 곡면 | ||
+ | * 다음을 만족하는 <math>H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}</math>의 기저, 2g 개의 닫힌 곡선 <math>a_1, \dots, a_g,b_1,\cdots,b_g</math>이 존재 | ||
+ | $$ | ||
+ | \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} | ||
+ | $$ | ||
+ | * 다음을 만족하는 <math>H^0(X, K) \cong \mathbb{C}^g</math>의 기저, holomorphic 1-form $\omega_1,\cdots,\omega_{g}$가 존재 | ||
+ | $$ | ||
+ | \begin{array}{c|ccc|ccc} | ||
+ | \text{} & a_1 & a_2 & a_3 & b_1 & b_2 & b_3 \\ | ||
+ | \hline | ||
+ | \omega _1 & \left\langle a_1|\omega _1\right\rangle & \left\langle a_2|\omega _1\right\rangle & \left\langle a_3|\omega _1\right\rangle & \left\langle b_1|\omega _1\right\rangle & \left\langle b_2|\omega _1\right\rangle & \left\langle b_3|\omega _1\right\rangle \\ | ||
+ | \omega _2 & \left\langle a_1|\omega _2\right\rangle & \left\langle a_2|\omega _2\right\rangle & \left\langle a_3|\omega _2\right\rangle & \left\langle b_1|\omega _2\right\rangle & \left\langle b_2|\omega _2\right\rangle & \left\langle b_3|\omega _2\right\rangle \\ | ||
+ | \omega _3 & \left\langle a_1|\omega _3\right\rangle & \left\langle a_2|\omega _3\right\rangle & \left\langle a_3|\omega _3\right\rangle & \left\langle b_1|\omega _3\right\rangle & \left\langle b_2|\omega _3\right\rangle & \left\langle b_3|\omega _3\right\rangle | ||
+ | \end{array} | ||
+ | = | ||
+ | \begin{array}{c|ccc|ccc} | ||
+ | \text{} & a_1 & a_2 & a_3 & b_1 & b_2 & b_3 \\ | ||
+ | \hline | ||
+ | \omega _1 & 1 & 0 & 0 & \tau _{1,1} & \tau _{1,2} & \tau _{1,3} \\ | ||
+ | \omega _2 & 0 & 1 & 0 & \tau _{2,1} & \tau _{2,2} & \tau _{2,3} \\ | ||
+ | \omega _3 & 0 & 0 & 1 & \tau _{3,1} & \tau _{3,2} & \tau _{3,3} | ||
+ | \end{array} | ||
+ | $$ | ||
+ | 여기서 $\left\langle \gamma|\omega\right\rangle=\int_{\gamma}\omega$ | ||
+ | * $\tau=(\tau_{i,j})_{1\leq i,j\leq g}$는 $\mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\}$의 원소이며, $X$의 period 행렬이라 부른다 | ||
+ | |||
+ | |||
+ | |||
==메모== | ==메모== | ||
* http://en.wikipedia.org/wiki/Riemann_bilinear_relations | * http://en.wikipedia.org/wiki/Riemann_bilinear_relations | ||
14번째 줄: | 43번째 줄: | ||
==관련된 항목들== | ==관련된 항목들== | ||
* [[사교 행렬]] | * [[사교 행렬]] | ||
+ | * [[아벨-야코비 정리]] | ||
2013년 6월 30일 (일) 08:08 판
개요
- $X$ : 종수가 $g$인 컴팩트 리만 곡면
- 다음을 만족하는 \(H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}\)의 기저, 2g 개의 닫힌 곡선 \(a_1, \dots, a_g,b_1,\cdots,b_g\)이 존재
$$ \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} $$
- 다음을 만족하는 \(H^0(X, K) \cong \mathbb{C}^g\)의 기저, holomorphic 1-form $\omega_1,\cdots,\omega_{g}$가 존재
$$ \begin{array}{c|ccc|ccc} \text{} & a_1 & a_2 & a_3 & b_1 & b_2 & b_3 \\ \hline \omega _1 & \left\langle a_1|\omega _1\right\rangle & \left\langle a_2|\omega _1\right\rangle & \left\langle a_3|\omega _1\right\rangle & \left\langle b_1|\omega _1\right\rangle & \left\langle b_2|\omega _1\right\rangle & \left\langle b_3|\omega _1\right\rangle \\ \omega _2 & \left\langle a_1|\omega _2\right\rangle & \left\langle a_2|\omega _2\right\rangle & \left\langle a_3|\omega _2\right\rangle & \left\langle b_1|\omega _2\right\rangle & \left\langle b_2|\omega _2\right\rangle & \left\langle b_3|\omega _2\right\rangle \\ \omega _3 & \left\langle a_1|\omega _3\right\rangle & \left\langle a_2|\omega _3\right\rangle & \left\langle a_3|\omega _3\right\rangle & \left\langle b_1|\omega _3\right\rangle & \left\langle b_2|\omega _3\right\rangle & \left\langle b_3|\omega _3\right\rangle \end{array} = \begin{array}{c|ccc|ccc} \text{} & a_1 & a_2 & a_3 & b_1 & b_2 & b_3 \\ \hline \omega _1 & 1 & 0 & 0 & \tau _{1,1} & \tau _{1,2} & \tau _{1,3} \\ \omega _2 & 0 & 1 & 0 & \tau _{2,1} & \tau _{2,2} & \tau _{2,3} \\ \omega _3 & 0 & 0 & 1 & \tau _{3,1} & \tau _{3,2} & \tau _{3,3} \end{array} $$ 여기서 $\left\langle \gamma|\omega\right\rangle=\int_{\gamma}\omega$
- $\tau=(\tau_{i,j})_{1\leq i,j\leq g}$는 $\mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\}$의 원소이며, $X$의 period 행렬이라 부른다
메모
- http://en.wikipedia.org/wiki/Riemann_bilinear_relations
- http://mathoverflow.net/questions/22286/intuition-behind-riemanns-bilinear-relations
- http://www-nonlinear.physik.uni-bremen.de/~prichter/pdfs/ThetaConst.pdf
- http://magma.maths.usyd.edu.au/magma/handbook/text/1402
- http://www.math.harvard.edu/~ctm/home/text/class/harvard/sem/html/home/notes/99/course.pdf
- http://people.reed.edu/~jerry/311/theta.pdf
- \(\omega_i\in \Omega^{1,0}\)
- \((\omega_k,\omega_l)=i\int_{X} \omega_k \wedge \omega_l=0\)
- \(\omega\neq 0\)
- \((\omega,\bar{\omega})=i\int_{X} \omega \wedge \bar{\omega}>0\)
관련된 항목들