"구면삼각형"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
  
 
===손톱모양의 넓이===
 
===손톱모양의 넓이===
북극과 남극을 잇는 두 개의 대원이 이루는 손톱모양의 넓이는, 그 둘 사이의 각도에 의해 결정되고, 그 넓이는 다음과 같습니다.<br><br> 대원둘의 각도가 <math>\theta</math>로 주어졌다면, 손톱모양의 넓이는 <math>2\theta</math>가 됩니다.<br> 넓이가 각도에 비례한다는 사실과, 반지름이 1인 구면의 넓이는 <math>4\pi</math>라는 사실을 이용하면 됩니다.<br>
+
* 북극과 남극을 잇는 두 개의 대원이 이루는 손톱모양의 넓이는, 그 둘 사이의 각도 $\theta$에 의해 결정되고, 그 넓이는 <math>2\theta</math>
 +
* 넓이가 각도에 비례한다는 사실과, 반지름이 1인 구면의 넓이는 <math>4\pi</math>라는 사실을 이용
  
 
[[파일:26lune.JPG]]
 
[[파일:26lune.JPG]]
 
  
 
===구면삼각형의 넓이 공식===
 
===구면삼각형의 넓이 공식===

2015년 8월 22일 (토) 05:22 판

개요

  • 구면의 측지선을 세 변으로 하는 삼각형
  • 구면삼각형의 변의 길이와 각도의 관계에 대해서는 구면삼각법 항목 참조


구면삼각형의 넓이

  • 편의를 위해 앞으로 구의 반지름은 1이라고 두자


손톱모양의 넓이

  • 북극과 남극을 잇는 두 개의 대원이 이루는 손톱모양의 넓이는, 그 둘 사이의 각도 $\theta$에 의해 결정되고, 그 넓이는 \(2\theta\)
  • 넓이가 각도에 비례한다는 사실과, 반지름이 1인 구면의 넓이는 \(4\pi\)라는 사실을 이용

26lune.JPG

구면삼각형의 넓이 공식

(정리)

세 각이 A,B,C 로 주어진 구면삼각형의 넓이는 \(A+B+C-\pi\) 이다

이를 이용하면, 이제 세 각이 A,B,C 로 주어진 구면삼각형의 넓이를 구할 수 있습니다.

(증명)

26sphere.JPG

위의 그림처럼, 구면삼각형의 한 꼭지점에서 반대편 극에 마주보고 있는 점까지 대원을 잇습니다. 그러면 위에처럼 회색으로 칠한 손톱모양이 세개 얻어지는데요. 그럼 눈을 크게 뜨고 관찰을 해볼까요.

이 손톱모양 세개는 정확히 구면의 절반을 덮고 있습니다.
세개의 손톱모양 각각의 넓이는 위에서 본대로 2A,2B,2C 입니다.
따라서 2A+2B+2C - (구면삼각형 ABC의 넓이 x 2 ) = \(2\pi\) (= 구면의 절반의 넓이)

그러므로 구면삼각형 ABC의 넓이는 \(A+B+C-\pi\). ■


삼각형의 세 각의 합

  • 면적은 언제나 양수이므로, 구면삼각형의 세 각의 합은 180도보다 크다!


매스매티카 파일 및 계산 리소스


블로그