"정규 분포"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
* 고교 과정의 통계에서는 정규분포의 기본적인 성질과 정규분포표 읽는 방법을 배움.
 
* 고교 과정의 통계에서는 정규분포의 기본적인 성질과 정규분포표 읽는 방법을 배움.
*  평균이 <math>\mu</math>, 표준편차가 <math>\sigma</math>인 정규분포의  <math>N(\mu,\sigma^2)</math>의 확률밀도함수, 즉 가우시안은 다음과 같음이 알려져 있음.:<math>\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)</math><br>
+
*  평균이 <math>\mu</math>, 표준편차가 <math>\sigma</math>인 정규분포의  <math>N(\mu,\sigma^2)</math>의 확률밀도함수, 즉 가우시안은 다음과 같음이 알려져 있음.:<math>\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)</math>
 
* 아래에서는 이 확률밀도함수가 어떻게 해서 얻어지는가를 보임.(기본적으로는 가우스의 증명)
 
* 아래에서는 이 확률밀도함수가 어떻게 해서 얻어지는가를 보임.(기본적으로는 가우스의 증명)
 
* 가우시안의 형태를 얻는 또다른 방법으로 [[드무아브르-라플라스 중심극한정리]] 를 참조.
 
* 가우시안의 형태를 얻는 또다른 방법으로 [[드무아브르-라플라스 중심극한정리]] 를 참조.
10번째 줄: 10번째 줄:
  
 
* 오차 = 관측하려는 실제값 - 관측에서 얻어지는 값
 
* 오차 = 관측하려는 실제값 - 관측에서 얻어지는 값
* 오차의 분포를 기술하는 확률밀도함수 <math>\Phi</math>는 다음과 같은 성질을 만족시켜야 함.<br> 1) <math>\Phi(x)=\Phi(-x)</math><br> 2)작은 오차가 큰 오차보다 더 나타날 확률이 커야한다. 그리고 매우 큰 오차는 나타날 확률이 매우 작아야 한다.<br> 3) <math>\int_{-\infty}^{\infty} \Phi(x)\,dx=1</math><br> 4) 관측하려는 실제값이 <math>\mu</math> 이고, n 번의 관측을 통해 <math>x_ 1, x_ 2, \cdots, x_n</math> 을 얻을 확률 <math>\Phi(\mu-x_ 1)\Phi(\mu-x_ 2)\cdots\Phi(\mu-x_n)</math>의 최대값은 <math>\mu=\frac{x_ 1+x_ 2+ \cdots+ x_n}{n}</math>에서 얻어진다.<br>
+
* 오차의 분포를 기술하는 확률밀도함수 <math>\Phi</math>는 다음과 같은 성질을 만족시켜야 함. 1) <math>\Phi(x)=\Phi(-x)</math> 2)작은 오차가 큰 오차보다 더 나타날 확률이 커야한다. 그리고 매우 큰 오차는 나타날 확률이 매우 작아야 한다. 3) <math>\int_{-\infty}^{\infty} \Phi(x)\,dx=1</math> 4) 관측하려는 실제값이 <math>\mu</math> 이고, n 번의 관측을 통해 <math>x_ 1, x_ 2, \cdots, x_n</math> 을 얻을 확률 <math>\Phi(\mu-x_ 1)\Phi(\mu-x_ 2)\cdots\Phi(\mu-x_n)</math>의 최대값은 <math>\mu=\frac{x_ 1+x_ 2+ \cdots+ x_n}{n}</math>에서 얻어진다.
 
* 4번 조건을 가우스의 산술평균의 법칙이라 부르며, 관측에 있어 실제값이 될 개연성이 가장 높은 값은 관측된 값들의 산술평균이라는 가정을 하는 것임.
 
* 4번 조건을 가우스의 산술평균의 법칙이라 부르며, 관측에 있어 실제값이 될 개연성이 가장 높은 값은 관측된 값들의 산술평균이라는 가정을 하는 것임.
  
  
(정리) 가우스
+
;정리 (가우스)
 
 
 
이 조건들을 만족시키는 확률밀도함수는 <math>\Phi(x)=\frac{h}{\sqrt{\pi}}e^{-h^2x^2}</math> 형태로 주어진다. 여기서 <math>h</math>는 확률의 정확도와 관련된 값임. (실제로는 표준편차와 연관되는 값)
 
이 조건들을 만족시키는 확률밀도함수는 <math>\Phi(x)=\frac{h}{\sqrt{\pi}}e^{-h^2x^2}</math> 형태로 주어진다. 여기서 <math>h</math>는 확률의 정확도와 관련된 값임. (실제로는 표준편차와 연관되는 값)
 
 
   
 
   
  
(증명)
+
;증명
  
 
<math>n=3</math>인 경우에 4번 조건을 만족시키는 함수를 찾아보자.
 
<math>n=3</math>인 경우에 4번 조건을 만족시키는 함수를 찾아보자.
47번째 줄: 45번째 줄:
  
 
* 중심극한정리는 여러 과정을 거쳐 발전
 
* 중심극한정리는 여러 과정을 거쳐 발전
* 이항분포의 중심극한 정리<br>
+
* 이항분포의 중심극한 정리
** 라플라스의 19세기 초기 버전<br>
+
** 라플라스의 19세기 초기 버전
 
확률변수 X가 이항분포 B(n,p)를 따를 때, n이 충분히 크면 X의 분포는 근사적으로 정규분포 N(np,npq)를 따른다
 
확률변수 X가 이항분포 B(n,p)를 따를 때, n이 충분히 크면 X의 분포는 근사적으로 정규분포 N(np,npq)를 따른다
 
** 드무아브르가 18세기에 발견한 것은 이항분포에서 확률이 1/2인 경우
 
** 드무아브르가 18세기에 발견한 것은 이항분포에서 확률이 1/2인 경우
61번째 줄: 59번째 줄:
 
** 정규분포의 밀도함수 형태를 물리적으로 얻을 수 있는 장치.
 
** 정규분포의 밀도함수 형태를 물리적으로 얻을 수 있는 장치.
 
** http://ptrow.com/articles/Galton_June_07.htm
 
** http://ptrow.com/articles/Galton_June_07.htm
*  예전 독일 마르크화에는 가우스의 발견을 기려 정규분포곡선이 새겨짐<br>[[파일:1950958-Gauss-detail2.jpg]]
+
*  예전 독일 마르크화에는 가우스의 발견을 기려 정규분포곡선이 새겨짐[[파일:1950958-Gauss-detail2.jpg]]
  
 
   
 
   
73번째 줄: 71번째 줄:
 
* [[벤포드의 법칙]]
 
* [[벤포드의 법칙]]
 
* [[최소자승법]]
 
* [[최소자승법]]
 
+
  
 
==계산 리소스==
 
==계산 리소스==
* [http://www.ruf.rice.edu/%7Elane/stat_sim/normal_approx/index.html 동전던지기 시뮬레이션]<br>
+
* [http://www.ruf.rice.edu/%7Elane/stat_sim/normal_approx/index.html 동전던지기 시뮬레이션]
 
** 자바애플릿
 
** 자바애플릿
 
+
  
 
==관련도서==
 
==관련도서==
  
* Fischer, Hans , History of the Central Limit Theorem : From Laplace to Donsker
+
* Fischer, Hans , History of the Central Limit Theorem : From Laplace to Donsker
 
* [http://www.amazon.com/History-Statistics-Measurement-Uncertainty-before/dp/067440341X/ref=sr_1_7?ie=UTF8&s=books&qid=1246720061&sr=1-7 The History of Statistics: The Measurement of Uncertainty before 1900]
 
* [http://www.amazon.com/History-Statistics-Measurement-Uncertainty-before/dp/067440341X/ref=sr_1_7?ie=UTF8&s=books&qid=1246720061&sr=1-7 The History of Statistics: The Measurement of Uncertainty before 1900]
*  Excursions in calculus<br>
+
*  Excursions in calculus
** 206~216p, [[1950958/attachments/870482|The law of errors]] (pdf)
+
** 206~216p, The law of errors
  
 
+
  
 
==사전형태의 자료==
 
==사전형태의 자료==
99번째 줄: 97번째 줄:
  
 
==에세이==
 
==에세이==
* [http://biomet.oxfordjournals.org/cgi/reprint/16/3-4/402.pdf [Historical Note on the Origin of the Normal Carve of Errors BY KARL PEARSON]]
+
* http://math.stackexchange.com/questions/28558/what-do-pi-and-e-stand-for-in-the-normal-distribution-formula
 
+
* Pearson, Karl. "Historical note on the origin of the normal curve of errors." Biometrika (1924): 402-404. http://biomet.oxfordjournals.org/cgi/reprint/16/3-4/402.pdf
 
+
 
 
  
 
==관련기사==
 
==관련기사==
  
* [http://www.hani.co.kr/arti/science/kistiscience/315218.html 과학자들의 진실게임 - 그 법칙은 내꺼야!]<br>
+
* [http://www.hani.co.kr/arti/science/kistiscience/315218.html 과학자들의 진실게임 - 그 법칙은 내꺼야!]
**  과학에서 최초의 발견자와 크레딧 논쟁 사례<br>
+
**  과학에서 최초의 발견자와 크레딧 논쟁 사례
**  한겨레, 2008-10-10<br>
+
**  한겨레, 2008-10-10
* [http://news.naver.com/main/read.nhn?mode=LPOD&mid=etc&oid=042&aid=0000010241 [재미있는 과학이야기] 통계의 기본원리 ② 가우스 분포]<br>
+
* [http://news.naver.com/main/read.nhn?mode=LPOD&mid=etc&oid=042&aid=0000010241 [재미있는 과학이야기] 통계의 기본원리 ② 가우스 분포]
 
** 주간한국, 2008-01-07
 
** 주간한국, 2008-01-07
네이버 뉴스 검색 (키워드 수정)<br>
+
기사 검색 (키워드 수정)
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%A0%95%EA%B7%9C%EB%B6%84%ED%8F%AC http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=정규분포]
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%A0%95%EA%B7%9C%EB%B6%84%ED%8F%AC http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=정규분포]
  
  
 
+
  
 
==블로그==
 
==블로그==
*  피타고라스의 창<br>
+
*  피타고라스의 창
 
** [http://bomber0.byus.net/index.php/2008/07/06/680 드무아브르의 중심극한정리(i)]
 
** [http://bomber0.byus.net/index.php/2008/07/06/680 드무아브르의 중심극한정리(i)]
 
** [http://bomber0.byus.net/index.php/2008/07/12/686 드무아브르의 중심극한정리(ii) : 스털링이 가져간 영광]
 
** [http://bomber0.byus.net/index.php/2008/07/12/686 드무아브르의 중심극한정리(ii) : 스털링이 가져간 영광]
124번째 줄: 121번째 줄:
 
** [http://bomber0.byus.net/index.php/2008/07/14/688 드무아브르의 중심극한정리(iv) : 가우시안의 눈부신 등장]
 
** [http://bomber0.byus.net/index.php/2008/07/14/688 드무아브르의 중심극한정리(iv) : 가우시안의 눈부신 등장]
  
 
+
  
  
 
==동영상==
 
==동영상==
 
 
* [http://www.youtube.com/watch?v=9tTHST1sLV8 Quincunx - The Probability Machine]
 
* [http://www.youtube.com/watch?v=9tTHST1sLV8 Quincunx - The Probability Machine]
* http://www.youtube.com/results?search_type=&search_query=quincunx
 

2014년 4월 12일 (토) 19:14 판

개요

  • 고교 과정의 통계에서는 정규분포의 기본적인 성질과 정규분포표 읽는 방법을 배움.
  • 평균이 \(\mu\), 표준편차가 \(\sigma\)인 정규분포의 \(N(\mu,\sigma^2)\)의 확률밀도함수, 즉 가우시안은 다음과 같음이 알려져 있음.\[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\]
  • 아래에서는 이 확률밀도함수가 어떻게 해서 얻어지는가를 보임.(기본적으로는 가우스의 증명)
  • 가우시안의 형태를 얻는 또다른 방법으로 드무아브르-라플라스 중심극한정리 를 참조.


'오차의 법칙'을 통한 가우시안의 유도

  • 오차 = 관측하려는 실제값 - 관측에서 얻어지는 값
  • 오차의 분포를 기술하는 확률밀도함수 \(\Phi\)는 다음과 같은 성질을 만족시켜야 함. 1) \(\Phi(x)=\Phi(-x)\) 2)작은 오차가 큰 오차보다 더 나타날 확률이 커야한다. 그리고 매우 큰 오차는 나타날 확률이 매우 작아야 한다. 3) \(\int_{-\infty}^{\infty} \Phi(x)\,dx=1\) 4) 관측하려는 실제값이 \(\mu\) 이고, n 번의 관측을 통해 \(x_ 1, x_ 2, \cdots, x_n\) 을 얻을 확률 \(\Phi(\mu-x_ 1)\Phi(\mu-x_ 2)\cdots\Phi(\mu-x_n)\)의 최대값은 \(\mu=\frac{x_ 1+x_ 2+ \cdots+ x_n}{n}\)에서 얻어진다.
  • 4번 조건을 가우스의 산술평균의 법칙이라 부르며, 관측에 있어 실제값이 될 개연성이 가장 높은 값은 관측된 값들의 산술평균이라는 가정을 하는 것임.


정리 (가우스)

이 조건들을 만족시키는 확률밀도함수는 \(\Phi(x)=\frac{h}{\sqrt{\pi}}e^{-h^2x^2}\) 형태로 주어진다. 여기서 \(h\)는 확률의 정확도와 관련된 값임. (실제로는 표준편차와 연관되는 값)


증명

\(n=3\)인 경우에 4번 조건을 만족시키는 함수를 찾아보자.

\(\Phi(x-x_ 1)\Phi(x-x_ 2)\Phi(x-x_ 3)\)의 최대값은 \(x=\frac{x_ 1+x_ 2+ x_ 3}{3}\) 에서 얻어진다.

따라서 \(\ln \Phi(x-x_ 1)\Phi(x-x_ 2)\Phi(x-x_ 3)\) 의 최대값도 \(x=\frac{x_ 1+x_ 2+ x_ 3}{3}\) 에서 얻어진다.

미분적분학의 결과에 의해, \(x=\frac{x_ 1+x_ 2+ x_ 3}{3}\) 이면, \(\frac{\Phi'(x-x_ 1)}{\Phi(x-x_ 1)}+\frac{\Phi'(x-x_ 2)}{\Phi(x-x_ 2)}+\frac{\Phi'(x-x_ 3)}{\Phi(x-x_ 3)}=0\) 이어야 한다.

\(F(x)=\frac{\Phi'(x)}{\Phi(x)}\) 으로 두자.

\(x+y+z=0\) 이면, \(F(x)+F(y)+F(z)=0\) 이어야 한다.

1번 조건에 의해, \(F\) 는 기함수이다.

따라서 모든 \(x,y\) 에 의해서, \(F(x+y)=F(x)+F(y)\) 가 성립한다. 그러므로 \(F(x)=Ax\) 형태로 쓸수 있다.

이제 적당한 상수 \(B, h\) 에 의해 \(\Phi(x)=Be^{-h^2x^2}\) 꼴로 쓸 수 있다.

모든 \(n\)에 대하여 4번조건이 만족됨은 쉽게 확인할 수 있다. (증명끝)


역사

  • 중심극한정리는 여러 과정을 거쳐 발전
  • 이항분포의 중심극한 정리
    • 라플라스의 19세기 초기 버전

확률변수 X가 이항분포 B(n,p)를 따를 때, n이 충분히 크면 X의 분포는 근사적으로 정규분포 N(np,npq)를 따른다


재미있는 사실

  • 정규분포와 중심극한정리에 대한 이해는 교양인이 알아야 할 수학 주제의 하나
  • Galton's quincunx
  • 예전 독일 마르크화에는 가우스의 발견을 기려 정규분포곡선이 새겨짐1950958-Gauss-detail2.jpg



관련된 항목들


계산 리소스


관련도서


사전형태의 자료


에세이


관련기사



블로그



동영상