"Q-초기하급수의 점근 급수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 수학노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
* [[#]] | * [[#]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
* <math>a>0,x>0,b\in\mathbb{R}</math>라 두자 | * <math>a>0,x>0,b\in\mathbb{R}</math>라 두자 | ||
19번째 줄: | 19번째 줄: | ||
− | ==예 | + | ==예== |
* A=1/2 (3,5) minimal model<br><math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)</math><br><math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)</math><br> | * A=1/2 (3,5) minimal model<br><math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)</math><br><math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)</math><br> | ||
32번째 줄: | 32번째 줄: | ||
− | ==역사 | + | ==역사== |
43번째 줄: | 43번째 줄: | ||
− | ==메모 | + | ==메모== |
53번째 줄: | 53번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
* [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 다이로그 함수 (Roger's dilogarithm)]] | * [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 다이로그 함수 (Roger's dilogarithm)]] | ||
61번째 줄: | 61번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* https://docs.google.com/file/d/0B8XXo8Tve1cxODk1ZjBiYWEtYjMyOS00MDdmLTg1ZjItMTJhOTA0MzZmYmY5/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxODk1ZjBiYWEtYjMyOS00MDdmLTg1ZjItMTJhOTA0MzZmYmY5/edit | ||
75번째 줄: | 75번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* 단어사전<br> | * 단어사전<br> | ||
92번째 줄: | 92번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
104번째 줄: | 104번째 줄: | ||
− | ==리뷰논문, 에세이, 강의노트 | + | ==리뷰논문, 에세이, 강의노트== |
110번째 줄: | 110번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series] Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136 | * '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series] Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136 | ||
121번째 줄: | 121번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 09:24 판
이 항목의 수학노트 원문주소==
개요
- \(a>0,x>0,b\in\mathbb{R}\)라 두자
- z>0는 방정식 \(1-x=zx^{a}\) 의 해라 하자.
- 다음 근사식이 성립함 [McIntosh1995]
\(\sum_{n=0}^{\infty}\frac{z^nq^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \frac{x^b}{\sqrt{x+a(1-x)}} \exp (-\frac{1}{\log q}\{\operatorname{Li}_2(zx^{a})+\frac{a}{2}\log^2 x\})\) 또는
\(\sum_{n=0}^{\infty}\frac{z^nq^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \frac{x^b}{\sqrt{x+a(1-x)}} \exp (\frac{L(1-x)}{t})\) 이 때, \(q=e^{-t}\).
예
- A=1/2 (3,5) minimal model
\(\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)\)
\(\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)\)
- A=1 (3,4) minimal model
\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)
\(2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
- A=2 (2,5) minimal model 로저스-라마누잔 항등식
\(\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)\)
\(\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxODk1ZjBiYWEtYjMyOS00MDdmLTg1ZjItMTJhOTA0MzZmYmY5/edit
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
수학용어번역==
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
- [McIntosh1995]Some Asymptotic Formulae for q-Hypergeometric Series Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/
관련도서
\(\sum_{n=0}^{\infty}\frac{z^nq^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \frac{x^b}{\sqrt{x+a(1-x)}} \exp (-\frac{1}{\log q}\{\operatorname{Li}_2(zx^{a})+\frac{a}{2}\log^2 x\})\) 또는
\(\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)\)
\(\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)\)
\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)
\(2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
\(\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)\)
\(\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)\)
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
- [McIntosh1995]Some Asymptotic Formulae for q-Hypergeometric Series Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/