"Tschirnhaus transformation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5>개요</h5>
+
==개요</h5>
  
 
* 방정식의 계수를 간단히 하기 위해 사용되는 변수 변환
 
* 방정식의 계수를 간단히 하기 위해 사용되는 변수 변환
15번째 줄: 15번째 줄:
 
 
 
 
  
<h5>간단한 예</h5>
+
==간단한 예</h5>
  
 
* [[3차 방정식의 근의 공식]] 에서 사용되는 변환
 
* [[3차 방정식의 근의 공식]] 에서 사용되는 변환
24번째 줄: 24번째 줄:
 
 
 
 
  
<h5>5차 방정식</h5>
+
==5차 방정식</h5>
  
 
* principal quintic <math>z^5+5az^2+5bz+c=0</math>
 
* principal quintic <math>z^5+5az^2+5bz+c=0</math>
34번째 줄: 34번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
 
 
 
45번째 줄: 45번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
* http://complexzeta.wordpress.com/2007/08/13/tschirnhaus-transformations/
 
* http://complexzeta.wordpress.com/2007/08/13/tschirnhaus-transformations/
54번째 줄: 54번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
 
 
 
78번째 줄: 78번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
91번째 줄: 91번째 줄:
 
 
 
 
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트</h5>
  
 
 
 
 
99번째 줄: 99번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
109번째 줄: 109번째 줄:
 
 
 
 
  
<h5>관련도서</h5>
+
==관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 10월 31일 (수) 12:12 판

이 항목의 수학노트 원문주소

 

 

==개요

  • 방정식의 계수를 간단히 하기 위해 사용되는 변수 변환
  • \(x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\) 의 해를 \(x_{k}\), \(k=1,\cdots, n\) 이라 두자
  • \(y_{k}=\alpha_{n-1} x_k^{n-1} + \alpha_{n-2} x_k^{n-2} + \cdots + \alpha_1 x_k + a_0 = 0\)는 새로운 방정식 \(y^n + A_{n-1} y^{n-1} + A_{n-2} y^{n-2} + \cdots + A_1 x + A_0 = 0\)의 해가 된다

 

 

==간단한 예

  • 3차 방정식의 근의 공식 에서 사용되는 변환
  • \(x^3+ax^2+bx+c=0\)의 2차항을 없애기 위해, \(x = t - a/3\) 라 두면, 새로운 방정식 \(t^3 + pt + q = 0\) 을 얻는다

 

 

==5차 방정식

  • principal quintic \(z^5+5az^2+5bz+c=0\)
  • Brioschi quintic \(z^5-10az^3+45a^2z-a^2=0\)
  • Bring-Jerrard quintic \(z^5+Az+B=0\)

 

 

==역사

 

 

 

==메모

 

 

==관련된 항목들

 

 

수학용어번역

 

 

 

==사전 형태의 자료

 

 

==리뷰논문, 에세이, 강의노트

 

 

 

==관련논문

 

 

==관련도서