"렘니스케이트 곡선의 등분 (Lemniscatomy)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (Pythagoras0 사용자가 렘니스케이트 곡선과 Lemniscatomy 문서를 렘니스케이트 곡선의 등분 (Lemniscatomy) 문서로 옮겼습니다.) |
Pythagoras0 (토론 | 기여) (→5등분점) |
||
47번째 줄: | 47번째 줄: | ||
==5등분점== | ==5등분점== | ||
+ | * 타원함수의 변환 | ||
+ | $$ | ||
+ | \phi(5\alpha)=\frac{\phi \left(5-62 \phi ^4-105 \phi ^8+300 \phi ^{12}-125 \phi ^{16}+50 \phi ^{20}+\phi ^{24}\right)}{1+50 \phi ^4-125 \phi ^8+300 \phi ^{12}-105 \phi ^{16}-62 \phi ^{20}+5 \phi ^{24}},\, \phi:=\phi(\alpha) | ||
+ | $$ | ||
[[파일:렘니스케이트 곡선과 Lemniscatomy2.gif]] | [[파일:렘니스케이트 곡선과 Lemniscatomy2.gif]] | ||
2015년 11월 24일 (화) 05:56 판
개요
렘니스케이트 사인과 코사인
- 렘니스케이트 사인\[x=\int_{0}^{s}\frac{dx}{\sqrt{1-x^4}}\]
- 렘니스케이트 코사인\[x=\int_{c}^{1}\frac{dx}{\sqrt{1-x^4}}\]
- 관계식\[s (x)^2+c (x)^2+c (x)^2 s (x)^2=1\]
- 덧셈공식\[s(x+y)=\frac{s(x) c(y)+c(x) s(y)}{1-s(x) c(x) s(y) c(y)}\]
렘니스케이트 타원함수
- 렘니스케이트 사인함수 \(x=\phi(t)\)는 타원적분 \(t=\int_{0}^{x}\frac{dx}{\sqrt{1-x^4}}\) 의 역함수로 정의된다
- \(m\in\mathbb{Z}[i]\) 에 대하여, \(y=\phi(mt)\) 로 두면, \(mt=\int_{0}^{y}\frac{dy}{\sqrt{1-y^4}}\) 을 만족한다
- \(x=\phi(t)\)와 \(y=\phi(mt)\)는\[\frac{dy}{\sqrt{1-y^4}}=m\frac{dx}{\sqrt{1-x^4}}\] 의 관계를 만족한다
- 렘니스케이트 사인함수의 덧셈공식(파그나노의 공식)
\[\phi(t+t')=\frac{\phi(t)\sqrt{1-\phi(t')^4}+\phi(t')\sqrt{1-\phi(t)^4}}{1+\phi(t)^2\phi(t')^2}\]
- \(\phi(z)\) 는 다음 자코비 타원함수 와 같다\[\text{sn}(z|-1)=z-\frac{z^5}{10}+\frac{z^9}{120}-\frac{11 z^{13}}{15600}+\frac{211 z^{17}}{3536000}+O\left(z^{21}\right)\]
Lemniscatomy
- 삼각함수의 삼각함수의 배각공식 에 비유하면 적당하다
- 렘니스케이트 타원함수의 덧셈공식으로부터 유도할 수 있다
3등분점
- 렘니스케이트의 삼등분\[\phi(3\alpha)=-\phi\frac{\phi^8+6\phi^4-3}{1+6\phi^4-3\phi^8}\]
- 위의 식으로부터 \(\phi^8+6\phi^4-3=0\) 의 해를 구하면, 렘니스케이트의 삼등분점을 구할 수 있다
- 세 점의 좌표는 다음과 같이 주어진다\[\left(0,0\right)\]\[\left(\sqrt{\frac{1}{2} \left(1+\sqrt{-3+2 \sqrt{3}}\right)},\sqrt{\frac{1}{2} \left(1-\sqrt{-3+2 \sqrt{3}}\right)}\right)\]\[\left(\sqrt{\frac{1}{2} \left(1+\sqrt{-3+2 \sqrt{3}}\right)},-\sqrt{\frac{1}{2} \left(1-\sqrt{-3+2 \sqrt{3}}\right)}\right)\]
5등분점
- 타원함수의 변환
$$ \phi(5\alpha)=\frac{\phi \left(5-62 \phi ^4-105 \phi ^8+300 \phi ^{12}-125 \phi ^{16}+50 \phi ^{20}+\phi ^{24}\right)}{1+50 \phi ^4-125 \phi ^8+300 \phi ^{12}-105 \phi ^{16}-62 \phi ^{20}+5 \phi ^{24}},\, \phi:=\phi(\alpha) $$
\[\left(\frac{\left(-13+6 \sqrt{5}-2 \sqrt{85-38 \sqrt{5}}\right)^{1/4} \sqrt{1+\sqrt{-13+6 \sqrt{5}-2 \sqrt{85-38 \sqrt{5}}}}}{\sqrt{2}},\frac{\left(-13+6 \sqrt{5}-2 \sqrt{85-38 \sqrt{5}}\right)^{1/4} \sqrt{1-\sqrt{-13+6 \sqrt{5}-2 \sqrt{85-38 \sqrt{5}}}}}{\sqrt{2}}\right)\]
역사
- 1797 가우스
- 1827 아벨
- 1846 아이젠슈타인
- 수학사 연표
메모
- http://books.google.com/books?id=9xu_fuIhmnYC&pg=PA46&lpg=PA46&dq=lemniscate+sine+cosine&source=bl&ots=sSXXD0v-DD&sig=9DA4Q26OtTQAyNVM_saqcJvQRP4&hl=en&sa=X&ei=K9YFUJTPF4nI2AXhneStBQ&ved=0CE4Q6AEwAA#v=onepage&q=lemniscate%20sine%20cosine&f=false
- http://books.google.com/books?id=3u4RF8SrRooC&pg=PA459&lpg=PA459&dq=lemniscate+division+cyclotomic&source=bl&ots=JpHeSPRYpp&sig=pFs13_v-R5n62_BideWx-31j7Gw&hl=ko&sa=X&ei=koZGT6rUAbGPigLw4MXbDQ&ved=0CCcQ6AEwAA#v=onepage&q=lemniscate%20division%20cyclotomic&f=false
- Norbert Schappacher, Some Milestones of Lemniscatomy
- David A. Cox, "Why Eisenstein proved the Eisenstein Criterion and why Schönemann discovered it first", American Mathematical Monthly 118 Vol 1 (January 2011)
관련된 항목들
수학용어번역
- lemniscatomy
- cyclotomy
매스매티카 파일 및 계산 리소스
리뷰논문, 에세이, 강의노트
관련논문
- N.H. Abel (1827–28), Recherches sur les fonctions elliptiques, Journal f.d. reine & angew. Math. 2, 101–181, 3, 160–190 [ = OEuvres compl`etes (Sylow, Lie, ed.s), vol. I, pp. 263–388]