"가우스 합"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
 
* 소수 <math>p</math>가 주어져 있을때,  <math>a\in \mathbb Z/p\mathbb Z</math>와 곱셈에 대한 준동형사상 <math>\chi \colon (\mathbb Z/p\mathbb Z)^{*} \to \mathbb C^{*}</math>상 <math>\chi \colon \mathbb Z/p\mathbb Z \to \mathbb C^{*}</math> 에 대하여 가우스합을 다음과 같이 정의함
 
* 소수 <math>p</math>가 주어져 있을때,  <math>a\in \mathbb Z/p\mathbb Z</math>와 곱셈에 대한 준동형사상 <math>\chi \colon (\mathbb Z/p\mathbb Z)^{*} \to \mathbb C^{*}</math>상 <math>\chi \colon \mathbb Z/p\mathbb Z \to \mathbb C^{*}</math> 에 대하여 가우스합을 다음과 같이 정의함
  
<math>g_a(\chi) := \sum_{t \in \mathbb Z/p\mathbb Z} \chi(t) e^{2 \pi i a t/p}</math>
+
<math>g_a(\chi) := \sum_{t \in \mathbb Z/p\mathbb Z} \chi(t) e^{2 \pi i a t/p}=\sum_{t \in \mathbb Z/p\mathbb Z} \chi(t) \zeta^{a t}</math>
  
*  성질<br><math>g_a(\chi) = \chi(a^{-1}) g_1(\chi)</math><br>  <br>
+
여기서 <math> \zeta = e^{2\pi i/p}</math>
  
 
+
*  성질<br><math>g_a(\chi) = \chi(a^{-1}) g_1(\chi)</math><br>
  
* <math>a=1</math>이고 <math>\chi(t)=$\left(\frac{t}{p}\right)</math> 일 때, 가우스합은 다음과 같이 주어짐<br><math>g_1(\chi) := \sum_{t \in \mathbb Z/p\mathbb Z} $\left(\frac{t}{p}\right) e^{2 \pi i t/p}</math><br>
+
* <math>a=1</math>이고 <math>\chi(t)=$\left(\frac{t}{p}\right)</math> 일 때, 가우스합은 다음과 같이 주어짐<br><math>g_1(\chi) := \sum_{t \in \mathbb Z/p\mathbb Z} \left(\frac{t}{p}\right)e^{2 \pi i t/p}=\sum_{t \in \mathbb Z/p\mathbb Z} \left(\frac{t}{p}\right) \zeta^t}=\sum_{a=1}^{p-1} \left(\frac{t}{p}\right) \zeta^t}</math><br>
  
 
<math>g_1(\chi) = \begin{cases} \sqrt{p}, & p \equiv 1 \pmod{4}, \\ i \sqrt{p}, & p \equiv 3 \pmod{4}. \end{cases}</math>
 
<math>g_1(\chi) = \begin{cases} \sqrt{p}, & p \equiv 1 \pmod{4}, \\ i \sqrt{p}, & p \equiv 3 \pmod{4}. \end{cases}</math>

2009년 8월 13일 (목) 10:11 판

간단한 소개
  • 소수 \(p\)가 주어져 있을때,  \(a\in \mathbb Z/p\mathbb Z\)와 곱셈에 대한 준동형사상 \(\chi \colon (\mathbb Z/p\mathbb Z)^{*} \to \mathbb C^{*}\)상 \(\chi \colon \mathbb Z/p\mathbb Z \to \mathbb C^{*}\) 에 대하여 가우스합을 다음과 같이 정의함

\(g_a(\chi) := \sum_{t \in \mathbb Z/p\mathbb Z} \chi(t) e^{2 \pi i a t/p}=\sum_{t \in \mathbb Z/p\mathbb Z} \chi(t) \zeta^{a t}\)

여기서 \( \zeta = e^{2\pi i/p}\)

  • 성질
    \(g_a(\chi) = \chi(a^{-1}) g_1(\chi)\)
  • \(a=1\)이고 \(\chi(t)=$\left(\frac{t}{p}\right)\) 일 때, 가우스합은 다음과 같이 주어짐
    \(g_1(\chi) := \sum_{t \in \mathbb Z/p\mathbb Z} \left(\frac{t}{p}\right)e^{2 \pi i t/p}=\sum_{t \in \mathbb Z/p\mathbb Z} \left(\frac{t}{p}\right) \zeta^t}=\sum_{a=1}^{p-1} \left(\frac{t}{p}\right) \zeta^t}\)

\(g_1(\chi) = \begin{cases} \sqrt{p}, & p \equiv 1 \pmod{4}, \\ i \sqrt{p}, & p \equiv 3 \pmod{4}. \end{cases}\)

 

 

정17각형의 작도 과정에서 나타나는 가우스합
  • \(\zeta=e^{2\pi i \over 17}\)  로 두자. 이 값을 대수적으로 구하는 것이 목표.
  • \((3^1, 3^2,3^3, 3^4, 3^5, 3^7, 3^8, 3^9, 3^{10}, 3^{11}, 3^{12}, 3^{13}, 3^{14}, 3^{15}, 3^{16}) \equiv (3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4,12, 2, 6, 1) \pmod {17}\)
  • 이 순서대로 2로 나눈 나머지에 따라서 분류
    • \(A_0 = \zeta^{9} + \zeta^{13} + \zeta^{15} + \zeta^{16}+\zeta^{8} + \zeta^{4} + \zeta^{2} +\zeta^{1}\)
    • \(A_1 = \zeta^3 + \zeta^{10} + \zeta^{5} + \zeta^{11}+\zeta^{14} + \zeta^{7} + \zeta^{12} +\zeta^{6}\)
    • \(A_0+A_1= -1\) 임은 쉽게 알 수 있음
    • \(A_0-A_1\) 는 가우스합이므로 \(A_0-A_1=\sqrt{17}\)
    • \(A_0 = \frac{-1 + \sqrt{17}}{2}\) , \(A_1= \frac{-1 - \sqrt{17}}{2}\)

 

 


관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

블로그