"J-불변량과 모듈라 다항식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→예) |
Pythagoras0 (토론 | 기여) |
||
21번째 줄: | 21번째 줄: | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxdlhoeW5aTWZqRFk/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxdlhoeW5aTWZqRFk/edit | ||
− | * http:// | + | * http://www.math.uwaterloo.ca/~mrubinst/modularpolynomials/phi_l.html |
− | + | * https://math.mit.edu/~drew/ClassicalModPolys.html | |
==관련도서== | ==관련도서== |
2018년 5월 19일 (토) 14:26 판
개요
- 타원 모듈라 j-함수 (elliptic modular function, j-invariant)
- $\Phi_n\bigl(j(n\tau),j(\tau)\bigr)=0$를 만족하는 기약다항식 $\Phi_n(x,y)\in{\mathbb{
Z}}[x,y]$이 존재하며, 이 때 차수는 $x,y$ 각각에 대하여 $\psi(n)=n\prod_{p|n}(1+1/p)$로 주어진다
예
- $n=2$인 경우
$$ \Phi_2(x,y)=x^3+y^3-x^2 y^2+1488 (x^2 y + x y^2)-162000 (x^2+y^2) +40773375 x y+8748000000 (x + y)-157464000000000 $$
- $n=3$인 경우
$$ \begin{aligned} \Phi_3(x,y) &=x^4+y^4-x^3 y^3+36864000 \left(x^3+y^3\right)-1069956 \left(x^3 y+x y^3\right)+2587918086 x^2 y^2 \\ &+452984832000000 \left(x^2+y^2\right)+8900222976000 \left(x^2 y+x y^2\right)+2232 \left(x^3 y^2+x^2 y^3\right) \\ &-770845966336000000 x y+1855425871872000000000 (x+y) \end{aligned} $$
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxdlhoeW5aTWZqRFk/edit
- http://www.math.uwaterloo.ca/~mrubinst/modularpolynomials/phi_l.html
- https://math.mit.edu/~drew/ClassicalModPolys.html
관련도서
- http://books.google.de/books?id=tsTfnHLmgmQC&pg=PA70&dq=157464000000000&hl=de&sa=X&ei=wk0NUvHKO6eK4ATh4oH4BQ&ved=0CDsQ6AEwAQ#v=onepage&q=157464000000000&f=false
- http://books.google.de/books?id=9pUg6nY_-hsC&pg=PA99&dq=157464000000000&hl=de&sa=X&ei=wk0NUvHKO6eK4ATh4oH4BQ&ved=0CDQQ6AEwAA#v=onepage&q=157464000000000&f=false
관련논문
- Sutherland, Andrew V. “On the Evaluation of Modular Polynomials.” arXiv:1202.3985 [cs, Math], February 17, 2012. doi:10.2140/obs.2013.1.531.
- Cohen, Paula. 1984. “On the Coefficients of the Transformation Polynomials for the Elliptic Modular Function.” Mathematical Proceedings of the Cambridge Philosophical Society 95 (3): 389–402. doi:http://dx.doi.org/10.1017/S0305004100061697.
- Yui, Noriko. 1978. “Explicit Form of the Modular Equation.” Journal Für Die Reine Und Angewandte Mathematik 299/300: 185–200. http://dx.doi.org/10.1515/crll.1978.299-300.185
- Herrmann, Oskar. 1975. “Über Die Berechnung Der Fourierkoeffizienten Der Funktion $j(\tau )$.” Journal Für Die Reine Und Angewandte Mathematik 274/275: 187–195. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002190532&IDDOC=253998