J-불변량과 모듈라 다항식
개요
- 타원 모듈라 j-함수 (elliptic modular function, j-invariant)
- \(\Phi_n\bigl(j(n\tau),j(\tau)\bigr)=0\)를 만족하는 기약다항식 \(\Phi_n(x,y)\in{\mathbb{ Z}}[x,y]\)이 존재하며, 이 때 차수는 \(x,y\) 각각에 대하여 \(\psi(n)=n\prod_{p|n}(1+1/p)\)로 주어진다
예
- \(n=1\)
\[ \Phi_1(x,y)=x-y \]
- \(n=2\)
\[ \Phi_2(x,y)=x^3+y^3-x^2 y^2+1488 (x^2 y + x y^2)-162000 (x^2+y^2) +40773375 x y+8748000000 (x + y)-157464000000000 \]
- \(n=3\)
\[ \begin{aligned} \Phi_3(x,y) &=x^4+y^4-x^3 y^3+36864000 \left(x^3+y^3\right)-1069956 \left(x^3 y+x y^3\right)+2587918086 x^2 y^2 \\ &+452984832000000 \left(x^2+y^2\right)+8900222976000 \left(x^2 y+x y^2\right)+2232 \left(x^3 y^2+x^2 y^3\right) \\ &-770845966336000000 x y+1855425871872000000000 (x+y) \end{aligned} \]
- \(n=4\)
\[ \Phi_4(x,y)=x^6+y^6+\dots \]
class number relation
- \(m>0\) : int
- \(\exists\) \(\phi_m(x,y)\in{\mathbb{Z}}[x,y]\) such that
\[\prod_{ad=m,a,d>0,0\leq b \leq d-1}(x-j(\frac{a\tau+b}{d}))=\phi_m(x,j(\tau))\]
- \(\phi_m(j(m\tau),j(\tau))=0\)
- \(\phi_{m}=\prod_{n^2|m}\Phi_{m/n^2}\)
- as a poly. in \(x\), \(\deg \phi_m(x,y)=\sigma_1(m)=\sum_{d|m}d\)
- examples
- \(m=1\), \(\phi_1(x,y)=\Phi_1(x,y)\)
- \(m=2\), \(\phi_2(x,y)=\Phi_2(x,y)\)
- \(m=3\), \(\phi_3(x,y)=\Phi_3(x,y)\)
- \(m=4\), \(\phi_4(x,y) = \Phi_1(x,y)\Phi_4(x,y) = x^7+\dots\)
- interested in \(F_m(x):=\phi_m(x,x)\in \Z[x]\) :
\[ F_1(x)=0 \] \[ F_2(x) = -(x-1728)(x+3375)^2(x-8000) = -H_{4}(x)H_{7}(x)^2H_{8}(x) \] \[ F_3(x) = -x(x-8000)^2 (x+32768)^2(x-54000) = - H_3(x)H_{8}(x)^2H_{11}(x)^2H_{12}(x) \]
- \(F_m(x)\neq 0\) if \(m\) is not a perfect square
- Hurwitz calculated its degree :
\[\deg F_m(x)= \sum_{d|m}\max(d,m/d)\]
- Kronecker : explicit factor. in class poly:
\[ F_m(x) =\pm \prod_{t\in \Z,t^2 \leq 4m}\mathcal{H}_{4m − t^2}(x) \] where \[ \mathcal{H}_d(x) = \prod_{Q\in \mathcal{Q}_d/\Gamma}(x-j(\tau_Q))^{1/w_{Q}} \]
- Let \(h_d\) be the Hurwitz-Kronecer class number (후르비츠-크로네커 유수)
\begin{array}{c|ccccccccccccccccccccccccc} d & 0 & 3 & 4 & 7 & 8 & 11 & 12 & 15 & 16 & 19 & 20 & 23 & 24 & 27 & 28 & 31 & 32 & 35 & 36 & 39 & 40 & 43 & 44 & 47 & 48 \\ \hline 12 h_{d} & -1 & 4 & 6 & 12 & 12 & 12 & 16 & 24 & 18 & 12 & 24 & 36 & 24 & 16 & 24 & 36 & 36 & 24 & 30 & 48 & 24 & 12 & 48 & 60 & 40 \\ \end{array}
- thm (class number relation ver. 1)
For \(m\) is not a perfect sq., define \[ G(m)= \sum_{t\in \Z,t^2 \leq 4m}h_{4m − t^2} \] Then \[ G(m)=\sum_{d|m}\max(d,m/d) \]
- this is surprising ; class numbers with different disc. have a linear relation!
- geometric interpretation \[\deg F_m(x)\] = number of intersections of two curves \(\phi_1(x,y)=x-y=0\) and \(\phi_m(x,y)=0\) in \(\C^2\)
- Hurwitz computed this for pairs \(\phi_{m_1}\) and \(\phi_{m_2}\)
- thm (class number relation ver. 2)
Assume that \(m=m_1m_2\) is not a perfect square. Let \(A=\C[X,Y]/\langle \phi_{m_1},\phi_{m_2}\rangle\). Then \[ |A|=\sum_{n|\gcd(m_1,m_2)}nG(m/n^2) \]
테이블
\begin{array}{c|cccccccccc} \left\{m_1,m_2\right\} & \{2,3\} & \{2,4\} & \{2,5\} & \{2,6\} & \{2,7\} & \{2,9\} & \{3,4\} & \{3,5\} & \{3,6\} & \{3,7\} \\ \hline \sum_{n|\gcd(m_1,m_2)}nG(m_1m_2/n^2) & 18 & 32 & 30 & 56 & 42 & 66 & 44 & 40 & 78 & 56 \\ \end{array}
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxdlhoeW5aTWZqRFk/edit
- http://www.math.uwaterloo.ca/~mrubinst/modularpolynomials/phi_l.html
- https://math.mit.edu/~drew/ClassicalModPolys.html
관련도서
- http://books.google.de/books?id=tsTfnHLmgmQC&pg=PA70&dq=157464000000000&hl=de&sa=X&ei=wk0NUvHKO6eK4ATh4oH4BQ&ved=0CDsQ6AEwAQ#v=onepage&q=157464000000000&f=false
- http://books.google.de/books?id=9pUg6nY_-hsC&pg=PA99&dq=157464000000000&hl=de&sa=X&ei=wk0NUvHKO6eK4ATh4oH4BQ&ved=0CDQQ6AEwAA#v=onepage&q=157464000000000&f=false
관련논문
- Sutherland, Andrew V. “On the Evaluation of Modular Polynomials.” arXiv:1202.3985 [cs, Math], February 17, 2012. doi:10.2140/obs.2013.1.531.
- Cohen, Paula. 1984. “On the Coefficients of the Transformation Polynomials for the Elliptic Modular Function.” Mathematical Proceedings of the Cambridge Philosophical Society 95 (3): 389–402. doi:http://dx.doi.org/10.1017/S0305004100061697.
- Yui, Noriko. 1978. “Explicit Form of the Modular Equation.” Journal Für Die Reine Und Angewandte Mathematik 299/300: 185–200. http://dx.doi.org/10.1515/crll.1978.299-300.185
- Herrmann, Oskar. 1975. “Über Die Berechnung Der Fourierkoeffizienten Der Funktion \(j(\tau )\).” Journal Für Die Reine Und Angewandte Mathematik 274/275: 187–195. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002190532&IDDOC=253998