"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “4909919” 문자열을 “” 문자열로)
imported>Pythagoras0
4번째 줄: 4번째 줄:
 
*  one-dimensional Bose gas<br>
 
*  one-dimensional Bose gas<br>
 
*  1963 Lieb and Liniger solved by [[Bethe ansatz]]<br>
 
*  1963 Lieb and Liniger solved by [[Bethe ansatz]]<br>
 
 
 
 
 
 
  
 
 
 
 
13번째 줄: 9번째 줄:
 
==Hamiltonian==
 
==Hamiltonian==
  
*  quantum mechanical Hamiltonian<br><math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math><br>
+
*  quantum mechanical Hamiltonian
 
+
:<math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math><br>
 
 
 
 
 
 
 
 
 
 
 
 
  
25번째 줄: 17번째 줄:
 
* <math>s_{ab}=k_a-k_b+ic</math><br>
 
* <math>s_{ab}=k_a-k_b+ic</math><br>
  
 
 
  
 
 
  
 
==Bethe-ansatz equation==
 
==Bethe-ansatz equation==
 
+
:<math>\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math>
<math>\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math>
 
 
 
 
 
  
 
 
 
 
  
 
==energy spectrum==
 
==energy spectrum==
 
+
* energy of a Bethe state
<math>E=\sum_{j=1}^{N}k_j^2</math>
+
:<math>E=\sum_{j=1}^{N}k_j^2</math>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==history==
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
  
 
 
 
 
57번째 줄: 32번째 줄:
 
==related items==
 
==related items==
  
 
 
  
 
 
  
 
==encyclopedia==
 
==encyclopedia==
  
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/Lieb-Liniger_model
* http://www.scholarpedia.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
 
==articles==
 
==articles==
 
+
* C. N. Yang and C. P. Yang [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction], J. Math. Phys. 10, 1115 (1969)
 +
* C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315
 +
* Elliott H. Lieb and Werner Liniger [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State], 1963
 
 
 
 
  
* [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction]<br>
 
** C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969)
 
* [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction]<br>
 
** C.N. Yang, Phys. Rev. Lett. 19 (1967), 1312-1315
 
* [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State]<br>
 
** Elliott H. Lieb and Werner Liniger, 1963
 
 
* http://www.ams.org/mathscinet
 
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 
* [http://arxiv.org/ ]http://arxiv.org/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
*
 
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 3월 4일 (월) 12:26 판

introduction

  • N bosons interacting on a line of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz

 

Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
 

two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]

 

energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]

 

related items

encyclopedia

 

articles