"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
35번째 줄: 35번째 줄:
  
 
==computational resource==
 
==computational resource==
* Day 5 - Yang-Baxter, Delta Bosons, Contact Terms
+
* [http://msstp.org/?q=node/275 Day 5 - Yang-Baxter, Delta Bosons, Contact Terms]
 
** [http://msstp.org/sites/default/files/Problems4.pdf Bose-Einstein Condensation and BAE exercise .pdf]
 
** [http://msstp.org/sites/default/files/Problems4.pdf Bose-Einstein Condensation and BAE exercise .pdf]
** [http://msstp.org/sites/default/files/Lecture%203%20-%20Problem%201%20solution.nb Nikolay Gromov, Lecture 4 (solution to Problem day 2) (nb)]
 
 
** [http://msstp.org/sites/default/files/problem4.nb Bose-Einstein Condensation and BAE solution .nb]
 
** [http://msstp.org/sites/default/files/problem4.nb Bose-Einstein Condensation and BAE solution .nb]
 
  
 
==encyclopedia==
 
==encyclopedia==

2013년 3월 4일 (월) 13:02 판

introduction

  • N bosons interacting on a line of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz

 

Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
 

two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]

 

energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]

 

related items

 

computational resource

encyclopedia


articles