"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
55번째 줄: 55번째 줄:
  
 
==articles==
 
==articles==
 +
* Zill, J. C., T. M. Wright, K. V. Kheruntsyan, T. Gasenzer, and M. J. Davis. “A Coordinate Bethe Ansatz Approach to the Calculation of Equilibrium and Nonequilibrium Correlations of the One-Dimensional Bose Gas.” arXiv:1601.00434 [cond-Mat, Physics:hep-Th], January 4, 2016. http://arxiv.org/abs/1601.00434.
 
* Veksler, Hagar, and Shmuel Fishman. “A Generalized Lieb-Liniger Model.” arXiv:1508.02011 [cond-Mat, Physics:math-Ph], August 9, 2015. http://arxiv.org/abs/1508.02011.
 
* Veksler, Hagar, and Shmuel Fishman. “A Generalized Lieb-Liniger Model.” arXiv:1508.02011 [cond-Mat, Physics:math-Ph], August 9, 2015. http://arxiv.org/abs/1508.02011.
 
* Flassig, Daniel, Andre Franca, and Alexander Pritzel. “Large-N Ground State of the Lieb-Liniger Model and Yang-Mills Theory on a Two-Sphere.” arXiv:1508.01515 [cond-Mat, Physics:hep-Th], August 6, 2015. http://arxiv.org/abs/1508.01515.
 
* Flassig, Daniel, Andre Franca, and Alexander Pritzel. “Large-N Ground State of the Lieb-Liniger Model and Yang-Mills Theory on a Two-Sphere.” arXiv:1508.01515 [cond-Mat, Physics:hep-Th], August 6, 2015. http://arxiv.org/abs/1508.01515.

2016년 1월 4일 (월) 21:26 판

introduction

  • N bosons interacting on the line $[0,L]$ of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz
  • In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit

 

Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
 


wave function

  • $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
  • $\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$

$$ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . $$


two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]

 

energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]

 

related items

 

computational resource

encyclopedia


articles