"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * N bosons interacting on the line $[0,L]$ of length L via the delta function potential | ||
+ | * one-dimensional Bose gas | ||
+ | * 1963 Lieb and Liniger solved by [[Bethe ansatz]] | ||
+ | * In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit | ||
+ | |||
+ | |||
+ | ==Hamiltonian== | ||
+ | |||
+ | * quantum mechanical Hamiltonian | ||
+ | :<math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math> | ||
+ | |||
+ | |||
+ | |||
+ | ==wave function== | ||
+ | * $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$ | ||
+ | * $\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$ | ||
+ | $$ | ||
+ | a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ==two-body scattering term== | ||
+ | |||
+ | * <math>s_{ab}=k_a-k_b+ic</math> | ||
+ | |||
+ | |||
+ | |||
+ | ==Bethe-ansatz equation== | ||
+ | :<math>\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math> | ||
+ | |||
+ | |||
+ | |||
+ | ==energy spectrum== | ||
+ | * energy of a Bethe state | ||
+ | :<math>E=\sum_{j=1}^{N}k_j^2</math> | ||
+ | |||
+ | |||
+ | |||
+ | ==related items== | ||
+ | |||
+ | |||
+ | |||
+ | ==computational resource== | ||
+ | * [http://msstp.org/?q=node/275 Day 5 - Yang-Baxter, Delta Bosons, Contact Terms] | ||
+ | ** [http://msstp.org/sites/default/files/Problems4.pdf Bose-Einstein Condensation and BAE exercise .pdf] | ||
+ | ** [http://msstp.org/sites/default/files/problem4.nb Bose-Einstein Condensation and BAE solution .nb] | ||
+ | |||
+ | ==encyclopedia== | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/Lieb-Liniger_model | ||
+ | |||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * Tracy, Craig A., and Harold Widom. “On the Ground State Energy of the Delta-Function Bose Gas.” arXiv:1601.04677 [math-Ph], January 18, 2016. http://arxiv.org/abs/1601.04677. | ||
+ | * Zill, J. C., T. M. Wright, K. V. Kheruntsyan, T. Gasenzer, and M. J. Davis. “A Coordinate Bethe Ansatz Approach to the Calculation of Equilibrium and Nonequilibrium Correlations of the One-Dimensional Bose Gas.” arXiv:1601.00434 [cond-Mat, Physics:hep-Th], January 4, 2016. http://arxiv.org/abs/1601.00434. | ||
+ | * Veksler, Hagar, and Shmuel Fishman. “A Generalized Lieb-Liniger Model.” arXiv:1508.02011 [cond-Mat, Physics:math-Ph], August 9, 2015. http://arxiv.org/abs/1508.02011. | ||
+ | * Flassig, Daniel, Andre Franca, and Alexander Pritzel. “Large-N Ground State of the Lieb-Liniger Model and Yang-Mills Theory on a Two-Sphere.” arXiv:1508.01515 [cond-Mat, Physics:hep-Th], August 6, 2015. http://arxiv.org/abs/1508.01515. | ||
+ | * Dorlas, T. C. “Orthogonality and Completeness of the Bethe Ansatz Eigenstates of the Nonlinear Schroedinger Model.” Communications in Mathematical Physics 154, no. 2 (June 1, 1993): 347–76. doi:10.1007/BF02097001. | ||
+ | * Yang, C. N., and C. P. Yang. “Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction.” Journal of Mathematical Physics 10, no. 7 (July 1, 1969): 1115–22. doi:[10.1063/1.1664947 http://dx.doi.org/10.1063/1.1664947]. | ||
+ | * C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315 | ||
+ | * Elliott H. Lieb and Werner Liniger [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State], 1963 | ||
+ | |||
+ | |||
+ | [[분류:integrable systems]] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:migrate]] |
2020년 11월 16일 (월) 03:30 판
introduction
- N bosons interacting on the line $[0,L]$ of length L via the delta function potential
- one-dimensional Bose gas
- 1963 Lieb and Liniger solved by Bethe ansatz
- In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit
Hamiltonian
- quantum mechanical Hamiltonian
\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
wave function
- $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
- $\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$
$$ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . $$
two-body scattering term
- \(s_{ab}=k_a-k_b+ic\)
Bethe-ansatz equation
\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]
energy spectrum
- energy of a Bethe state
\[E=\sum_{j=1}^{N}k_j^2\]
computational resource
encyclopedia
articles
- Tracy, Craig A., and Harold Widom. “On the Ground State Energy of the Delta-Function Bose Gas.” arXiv:1601.04677 [math-Ph], January 18, 2016. http://arxiv.org/abs/1601.04677.
- Zill, J. C., T. M. Wright, K. V. Kheruntsyan, T. Gasenzer, and M. J. Davis. “A Coordinate Bethe Ansatz Approach to the Calculation of Equilibrium and Nonequilibrium Correlations of the One-Dimensional Bose Gas.” arXiv:1601.00434 [cond-Mat, Physics:hep-Th], January 4, 2016. http://arxiv.org/abs/1601.00434.
- Veksler, Hagar, and Shmuel Fishman. “A Generalized Lieb-Liniger Model.” arXiv:1508.02011 [cond-Mat, Physics:math-Ph], August 9, 2015. http://arxiv.org/abs/1508.02011.
- Flassig, Daniel, Andre Franca, and Alexander Pritzel. “Large-N Ground State of the Lieb-Liniger Model and Yang-Mills Theory on a Two-Sphere.” arXiv:1508.01515 [cond-Mat, Physics:hep-Th], August 6, 2015. http://arxiv.org/abs/1508.01515.
- Dorlas, T. C. “Orthogonality and Completeness of the Bethe Ansatz Eigenstates of the Nonlinear Schroedinger Model.” Communications in Mathematical Physics 154, no. 2 (June 1, 1993): 347–76. doi:10.1007/BF02097001.
- Yang, C. N., and C. P. Yang. “Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction.” Journal of Mathematical Physics 10, no. 7 (July 1, 1969): 1115–22. doi:[10.1063/1.1664947 http://dx.doi.org/10.1063/1.1664947].
- C.N. Yang Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315
- Elliott H. Lieb and Werner Liniger Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, 1963