"Quantum dilogarithm"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
61번째 줄: | 61번째 줄: | ||
* [http://dx.doi.org/10.1088/0305-4470/28/8/014 Remarks on the quantum dilogarithm]<br> | * [http://dx.doi.org/10.1088/0305-4470/28/8/014 Remarks on the quantum dilogarithm]<br> | ||
** V V Bazhanov and N Yu Reshetikhin, 1995 J. Phys. A: Math. Gen. 28 2217 | ** V V Bazhanov and N Yu Reshetikhin, 1995 J. Phys. A: Math. Gen. 28 2217 | ||
− | * < | + | * <br>[http://dx.doi.org/10.1142/S0217732394000447 Quantum Dilogarithm]<br> |
** L.D.<em style="line-height: 2em;">Fadeev</em> and R.M.<em style="line-height: 2em;">Kashaev</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434 | ** L.D.<em style="line-height: 2em;">Fadeev</em> and R.M.<em style="line-height: 2em;">Kashaev</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434 | ||
* http://ncatlab.org/nlab/show/quantum+dilogarithm | * http://ncatlab.org/nlab/show/quantum+dilogarithm |
2010년 5월 19일 (수) 05:15 판
introduction
quantum plane
- noncommutative geometry
- \(uv=qvu\)
history
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- The hyperbolic volume of knots from quantum dilogarithm
- R. M. Kashaev, 1996
- Remarks on the quantum dilogarithm
- V V Bazhanov and N Yu Reshetikhin, 1995 J. Phys. A: Math. Gen. 28 2217
-
Quantum Dilogarithm
- L.D.Fadeev and R.M.Kashaev, Mod. Phys. Lett. A. 9 (1994) p.427–434
- http://ncatlab.org/nlab/show/quantum+dilogarithm
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[1]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1023/A:1007364912784
question and answers(Math Overflow)
blogs
experts on the field