"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
*  noncommutative geometry<br>
 
*  noncommutative geometry<br>
 
* <math>uv=qvu</math><br>
 
* <math>uv=qvu</math><br>
 +
*  this is called the Weyl algebra<br>
  
 
 
 
 
14번째 줄: 15번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;"> </h5>
+
<h5 style="margin: 0px; line-height: 2em;">quantum dilogarithm</h5>
 +
 
 +
<math>\Phi(z)=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
  
 
 
 
 
 
<math>\Phi(z)=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 
  
 
 
 
 

2010년 5월 19일 (수) 05:28 판

introduction

 

 

quantum plane
  • noncommutative geometry
  • \(uv=qvu\)
  • this is called the Weyl algebra

 

 

quantum dilogarithm

\(\Phi(z)=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

 

 

asymptotics

 

  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

where C= sum of Rogers dilogarithms

  •  

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links