"Klein-Gordon equation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
  
* free massive scalar field
+
* free massive scalar field<br>
 +
** describes the spin-0 particles
 
* in condensed matter physics it describes long wavelength optical phonons
 
* in condensed matter physics it describes long wavelength optical phonons
 
+
* formulated as a relativistic generalization of Schrodinger equation
 
 
 
 
 
 
 
 
 
 
 
 
* relativistic generalization of Schrodinger equation
 
* this describes the spin-0 particles
 
 
*  there are real KG equation and complex KG equation<br>
 
*  there are real KG equation and complex KG equation<br>
 
** real case describes electrically neutral particles
 
** real case describes electrically neutral particles
36번째 줄: 29번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
<h5>Lorentz invariant commutation relation</h5>
  
 
 
 
 

2010년 11월 9일 (화) 04:03 판

introduction
  • free massive scalar field
    • describes the spin-0 particles
  • in condensed matter physics it describes long wavelength optical phonons
  • formulated as a relativistic generalization of Schrodinger equation
  • there are real KG equation and complex KG equation
    • real case describes electrically neutral particles
    • complex case describes charged particles
  • \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
  • people found 2 problems of KG equations
    • negative energy states
    • negative probability density
  • correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
    • negative probability density -> charge density
  • Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
    • for example, \(\pi\)-meson
  • Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.

 

 

plane wave solutions
  •  

 

 

 

Lorentz invariant commutation relation

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links