"3-manifolds and their invariants"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
87번째 줄: | 87번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5> | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items[[4667393|]]</h5> |
− | |||
* [[quantum dilogarithm]]<br> | * [[quantum dilogarithm]]<br> | ||
126번째 줄: | 125번째 줄: | ||
<h5 style="line-height: 2em; margin: 0px;">expositions</h5> | <h5 style="line-height: 2em; margin: 0px;">expositions</h5> | ||
− | * Arithmetic properties of quantum invariants of manifolds http://www.mathnet.ru/php/presentation.phtml?presentid=3937&option_lang=rus<br> | + | * Arithmetic properties of quantum invariants of manifolds http://www.mathnet.ru/php/presentation.phtml?presentid=3937&option_lang=rus Don Zagier<br> |
134번째 줄: | 133번째 줄: | ||
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
− | * [http://arxiv.org/abs/hep-th/9811173 Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links] | + | * [http://arxiv.org/abs/hep-th/9811173 Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links] J.M. Borwein, D.J. Broadhurst, 1998 |
− | |||
* Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:[http://dx.doi.org/10.1142/S0217751X96001905 10.1142/S0217751X96001905]. http://arxiv.org/abs/hep-th/9505102. | * Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:[http://dx.doi.org/10.1142/S0217751X96001905 10.1142/S0217751X96001905]. http://arxiv.org/abs/hep-th/9505102. | ||
− | * | + | * Three-manifolds and the Temperley-Lieb algebra W. B. R. Lickorish, 1991 |
− | + | * [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions] Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월<br> | |
− | * [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions] | ||
− | |||
* http://dx.doi.org/10.1063/1.3085764 | * http://dx.doi.org/10.1063/1.3085764 |
2012년 5월 3일 (목) 15:51 판
introduction
- volume of knot complements
- Chern-Simons invariant of manifolds
- Turaev-Viro invariant (related to 6j symbols)
- Kauffman and Line 'The Temperley Lie algebra recoupling theory and invariants of 3-manifolds"
- Turaev-Viro "state sum invariants of 3-manifolds and quantum 6j-symbols)
maps between threefolds
- maps between aspherical 3 manifolds
- aspherical threefolds = second and higher homotopy groups vanish
- JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
- cutting M into
- Seifert fibered pieces ~ non hyperbolic pieces
- atoroidal pieces ~ hyperbolic pieces
- cutting M into
- Thurston's geometrization
- S^3, E\times S^2, Sol
- E^3, E\times H^2, SL_2
- H^3, Nil
Volume of knot complement
- KnotData[]
KnotData["FigureEight", "HyperbolicVolume"]
N[%, 20]
- Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
- Bloch-Wigner dilogarithm is involved
a problem
- Prove
\(\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))\) - a log tangent integral
Reshetikihn, Turaev
software
history
하위페이지
encyclopedia
-
- http://ko.wikipedia.org/wiki/[1]
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
expositions
- Arithmetic properties of quantum invariants of manifolds http://www.mathnet.ru/php/presentation.phtml?presentid=3937&option_lang=rus Don Zagier
articles
- Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links J.M. Borwein, D.J. Broadhurst, 1998
- Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:10.1142/S0217751X96001905. http://arxiv.org/abs/hep-th/9505102.
- Three-manifolds and the Temperley-Lieb algebra W. B. R. Lickorish, 1991
- Hyperbolic manifolds and special values of Dedekind zeta-functions Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
question and answers(Math Overflow)
blogs
experts on the field