"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
64번째 줄: 64번째 줄:
 
* [http://www.geometrygames.org/SnapPea/ snappea]
 
* [http://www.geometrygames.org/SnapPea/ snappea]
 
* [http://sourceforge.net/projects/snap-pari/ snap]
 
* [http://sourceforge.net/projects/snap-pari/ snap]
 +
* [http://regina.sourceforge.net/ Regina]
 
* [http://www.math.utk.edu/%7Emorwen/knotscape.html http://www.math.utk.edu/~morwen/knotscape.html]
 
* [http://www.math.utk.edu/%7Emorwen/knotscape.html http://www.math.utk.edu/~morwen/knotscape.html]
  
92번째 줄: 93번째 줄:
 
* http://en.wikipedia.org/wiki/Quantum_invariant<br>
 
* http://en.wikipedia.org/wiki/Quantum_invariant<br>
 
* http://ko.wikipedia.org/wiki/[http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 ]
 
* http://ko.wikipedia.org/wiki/[http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 ]
* http://en.wikipedia.org/wiki/
 
  
  
102번째 줄: 102번째 줄:
  
 
* http://www.worldscibooks.com/mathematics/4746.html<br>
 
* http://www.worldscibooks.com/mathematics/4746.html<br>
* [[2010년 books and articles]]<br>
+
 
  
  
128번째 줄: 128번째 줄:
 
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions] Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월<br>
 
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions] Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월<br>
  
* http://dx.doi.org/10.1063/1.3085764
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 5월 18일 (토) 07:05 판

fundamental results on three manifolds

  • Mostow-Prasad rigidity
  • geometrization


maps between threefolds

  • maps between aspherical 3 manifolds
  • aspherical threefolds = second and higher homotopy groups vanish
  • JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
    • cutting M into
      • Seifert fibered pieces ~ non hyperbolic pieces
      • atoroidal pieces ~ hyperbolic pieces
  • Thurston's geometrization
    • S^3, E\times S^2, Sol
    • E^3, E\times H^2, SL_2
    • H^3, Nil

 

 

Volume of knot complement

  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

a problem

  • Prove
    $$ \begin{align} \frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt & =\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7})) \\ & = \frac{2}{\sqrt{7}}(Cl(2\pi /7)+Cl(4\pi/7)-Cl(6\pi/7)) \end{align} $$
  • a log tangent integral

 

invariants

Reshetikihn, Turaev

 

 

software

 

 

history

 


related items

 

encyclopedia


 

 

books



 

 

 

expositions

 

 

articles