"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
61번째 줄: 61번째 줄:
  
 
==software==
 
==software==
 
+
* [http://www.geometrygames.org/ Jeff Weeks’Topology and Geometry Software]
* [http://www.geometrygames.org/SnapPea/ snappea]
+
** [http://www.geometrygames.org/SnapPea/ SnapPea]
 
* [http://sourceforge.net/projects/snap-pari/ snap]
 
* [http://sourceforge.net/projects/snap-pari/ snap]
 
* [http://regina.sourceforge.net/ Regina]
 
* [http://regina.sourceforge.net/ Regina]

2013년 5월 20일 (월) 01:35 판

fundamental results on three manifolds

  • Mostow-Prasad rigidity
  • geometrization


maps between threefolds

  • maps between aspherical 3 manifolds
  • aspherical threefolds = second and higher homotopy groups vanish
  • JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
    • cutting M into
      • Seifert fibered pieces ~ non hyperbolic pieces
      • atoroidal pieces ~ hyperbolic pieces
  • Thurston's geometrization
    • S^3, E\times S^2, Sol
    • E^3, E\times H^2, SL_2
    • H^3, Nil

 

 

Volume of knot complement

  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

a problem

  • Prove
    $$ \begin{align} \frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt & =\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7})) \\ & = \frac{2}{\sqrt{7}}(Cl(2\pi /7)+Cl(4\pi/7)-Cl(6\pi/7)) \end{align} $$
  • a log tangent integral

 

invariants

Reshetikihn, Turaev

 

 

software

 

 

history

 


related items

 

encyclopedia


 

 

books



 

 

 

expositions

 

 

articles