"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
8번째 줄: 8번째 줄:
 
* maps between aspherical 3 manifolds
 
* maps between aspherical 3 manifolds
 
* aspherical threefolds = second and higher homotopy groups vanish
 
* aspherical threefolds = second and higher homotopy groups vanish
*  JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition<br>
+
*  JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
**  cutting M into<br>
+
**  cutting M into
 
*** Seifert fibered pieces ~ non hyperbolic pieces
 
*** Seifert fibered pieces ~ non hyperbolic pieces
 
*** atoroidal pieces ~ hyperbolic pieces
 
*** atoroidal pieces ~ hyperbolic pieces
*  Thurston's geometrization<br>
+
*  Thurston's geometrization
 
** S^3, E\times S^2, Sol
 
** S^3, E\times S^2, Sol
 
** E^3, E\times H^2, SL_2
 
** E^3, E\times H^2, SL_2
 
** H^3, Nil
 
** H^3, Nil
  
 
+
  
 
+
  
 
==Volume of knot complement==
 
==Volume of knot complement==
 +
*  Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
 +
* {{수학노트|url=블로흐-비그너_다이로그(Bloch-Wigner_dilogarithm)}}
 +
* {{수학노트|url=로바체프스키_함수}}
  
#  KnotData[]<br> KnotData["FigureEight", "HyperbolicVolume"]<br> N[%, 20]<br>
 
  
* Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold<br>
+
   
* [http://pythagoras0.springnote.com/pages/4633853 Bloch-Wigner dilogarithm] is involved<br>
 
 
 
 
 
 
 
 
 
 
 
==a problem==
 
 
 
*  Prove<br>$$
 
\begin{align}
 
\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt & =\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7})) \\
 
& = \frac{2}{\sqrt{7}}(Cl(2\pi /7)+Cl(4\pi/7)-Cl(6\pi/7))
 
\end{align}
 
$$<br>
 
* [[a log tangent integral]]<br>
 
 
 
 
 
 
==invariants==
 
==invariants==
 +
* [[Chern-Simons gauge theory and Witten's invariant]]
 +
* [[Chern-Simons invariant]]
 
* Turaev-Viro invariant (related to [[6j symbols (Racha coefficient)|6j symbols]])
 
* Turaev-Viro invariant (related to [[6j symbols (Racha coefficient)|6j symbols]])
 
** Kauffman and Line 'The Temperley Lie algebra recoupling theory and invariants of 3-manifolds"
 
** Kauffman and Line 'The Temperley Lie algebra recoupling theory and invariants of 3-manifolds"
 
** Turaev-Viro "state sum invariants of 3-manifolds and quantum 6j-symbols)
 
** Turaev-Viro "state sum invariants of 3-manifolds and quantum 6j-symbols)
* [[Chern-Simons invariant]]
 
 
* [[Kashaev's volume conjecture]]
 
* [[Kashaev's volume conjecture]]
 
* [[Triangulations and the Bloch group]]
 
* [[Triangulations and the Bloch group]]
53번째 줄: 39번째 줄:
 
* [[Number fields and threefolds]]
 
* [[Number fields and threefolds]]
 
* [[Reidemeister torsion]]
 
* [[Reidemeister torsion]]
 +
  
 
==Reshetikihn, Turaev==
 
==Reshetikihn, Turaev==
  
  
 
+
  
 
==history==
 
==history==
63번째 줄: 50번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
  
75번째 줄: 62번째 줄:
 
* [[volume of hyperbolic threefolds and L-values]]
 
* [[volume of hyperbolic threefolds and L-values]]
  
 
+
  
 
==encyclopedia==
 
==encyclopedia==
  
* http://en.wikipedia.org/wiki/Quantum_invariant<br>
+
* http://en.wikipedia.org/wiki/Quantum_invariant
* http://ko.wikipedia.org/wiki/[http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 ]
+
* http://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)
 
 
  
 
+
  
 
+
  
 
==books==
 
==books==
  
* http://www.worldscibooks.com/mathematics/4746.html<br>
+
* Tomotada Ohtsuki [http://www.worldscibooks.com/mathematics/4746.html Quantum Invariants]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
+
  
 
==expositions==
 
==expositions==
  
*  Arithmetic properties of quantum invariants of manifolds http://www.mathnet.ru/php/presentation.phtml?presentid=3937&option_lang=rus Don Zagier<br>
+
*  Arithmetic properties of quantum invariants of manifolds http://www.mathnet.ru/php/presentation.phtml?presentid=3937&option_lang=rus Don Zagier
*  Christian Blanchet, Vladimir Turaev [http://www.math.jussieu.fr/%7Eblanchet/Articles/EMP_quantum_inv.pdf Quantum Invariants of 3-manifolds]<br>
+
*  Christian Blanchet, Vladimir Turaev [http://www.math.jussieu.fr/%7Eblanchet/Articles/EMP_quantum_inv.pdf Quantum Invariants of 3-manifolds]
  
 
+
  
 
+
  
 
==articles==
 
==articles==
115번째 줄: 94번째 줄:
 
* Kohno, Toshitake, and Toshie Takata. "Level-Rank Duality of Witten's 3-Manifold Invariants." Progress in algebraic combinatorics 24 (1996): 243. http://tqft.net/other-papers/knot-theory/Level-rank%20duality%20-%20Kohno,%20Takata.pdf
 
* Kohno, Toshitake, and Toshie Takata. "Level-Rank Duality of Witten's 3-Manifold Invariants." Progress in algebraic combinatorics 24 (1996): 243. http://tqft.net/other-papers/knot-theory/Level-rank%20duality%20-%20Kohno,%20Takata.pdf
 
* Three-manifolds and the Temperley-Lieb algebra W. B. R. Lickorish, 1991
 
* Three-manifolds and the Temperley-Lieb algebra W. B. R. Lickorish, 1991
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions] Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
+
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions] Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
  
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 5월 20일 (월) 06:03 판

fundamental results on three manifolds

  • Mostow-Prasad rigidity
  • geometrization


maps between threefolds

  • maps between aspherical 3 manifolds
  • aspherical threefolds = second and higher homotopy groups vanish
  • JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
    • cutting M into
      • Seifert fibered pieces ~ non hyperbolic pieces
      • atoroidal pieces ~ hyperbolic pieces
  • Thurston's geometrization
    • S^3, E\times S^2, Sol
    • E^3, E\times H^2, SL_2
    • H^3, Nil



Volume of knot complement


invariants


Reshetikihn, Turaev

history



related items


encyclopedia



books


expositions



articles