"1,2,4,8 과 1,3,7"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
<h5>Hurwitz's theorem for composition algebras (Normed division algebras)</h5>
 +
 +
 
 +
 +
a '''normed division algebra'''<em>A</em> is a [http://en.wikipedia.org/wiki/Division_algebra division algebra] over the [http://en.wikipedia.org/wiki/Real_number real] or [http://en.wikipedia.org/wiki/Complex_number complex] numbers which is also a [http://en.wikipedia.org/wiki/Normed_vector_space normed vector space], with norm || · || satisfying the following property:
 +
 +
: <math>\|xy\| = \|x\| \|y\|</math> for all <em>x</em> and <em>y</em> in <em>A</em>.
 +
 +
Normed division algebras are a special case of composition algebras
 +
 +
<br>'''composition algebra'''<em>A</em> over a [http://en.wikipedia.org/wiki/Field_%28mathematics%29 field]<em>K</em> is a [http://en.wikipedia.org/wiki/Unital unital] (but not necessarily [http://en.wikipedia.org/wiki/Associative associative]) [http://en.wikipedia.org/wiki/Algebra_over_a_field algebra] over <em>K</em> together with a [http://en.wikipedia.org/wiki/Nondegenerate nondegenerate][http://en.wikipedia.org/wiki/Quadratic_form quadratic form]<em>N</em> which satisfies
 +
 +
: <math>N(xy) = N(x)N(y)\,</math>
 +
 +
for all <em>x</em> and <em>y</em> in <em>A</em>.
 +
 +
 
 +
 +
 
 +
 +
(정리) Hurwitz
 +
 +
the only composition algebras over <math>\Bbb{R}</math> are <math>\Bbb{R}</math>, <math>\Bbb{R}</math>, <math>\Bbb{R}</math>, <math>\Bbb{R}</math>\Bbb{R} , \mathbb{C}, \mathbb H and \mathbb{O}
 +
 +
that is the real numbers, the complex numbers, the quaternions and the octonions.
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<br>
  
 
 
 
 
65번째 줄: 103번째 줄:
 
*  General Cohomology Theory and K-Theory (London Mathematical Society Lecture Note Series) (Paperback)<br>
 
*  General Cohomology Theory and K-Theory (London Mathematical Society Lecture Note Series) (Paperback)<br>
 
** P. J. Hilton
 
** P. J. Hilton
 +
* John H. Conway, Derek A. Smith On Quaternions and Octonions. A.K. Peters, 2003.
 +
* John Baez, The Octonions, AMS 2001.
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
86번째 줄: 126번째 줄:
 
** <cite>The Annals of Mathematics</cite>, Second Series, Vol. 72, No. 1 (Jul., 1960), pp. 20-104
 
** <cite>The Annals of Mathematics</cite>, Second Series, Vol. 72, No. 1 (Jul., 1960), pp. 20-104
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/Hurwitz%27s_theorem#Hurwitz.27s_theorem_for_composition_algebras
 +
* http://en.wikipedia.org/wiki/Composition_algebra
 +
* http://en.wikipedia.org/wiki/Normed_division_algebra
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://viswiki.com/en/
 
* http://viswiki.com/en/

2009년 4월 17일 (금) 07:49 판

간단한 소개
  • \(\mathbb R^n\) 은 division algebra이다 \(\iff\)\(n=1,2,4,8\)
  • \(S^n\) 는 H-space 이다. \(\iff\)\(n=0,1,3,7\)
  • \(S^n\) 은 n개의 일차독립인 벡터장을 갖는다 \(\iff\)\(n=0,1,3,7\)
  • fiber 번들 \(S^p \to S^q \to S^r\) 이 존재한다. \(\iff\)\((p,q,r) = (0,1,1),(1,3,2),(3,7,4),(7,15,8)\)

 

 

Hurwitz's theorem for composition algebras (Normed division algebras)

 

a normed division algebraA is a division algebra over the real or complex numbers which is also a normed vector space, with norm || · || satisfying the following property:

\[\|xy\| = \|x\| \|y\|\] for all x and y in A.

Normed division algebras are a special case of composition algebras


composition algebraA over a fieldK is a unital (but not necessarily associative) algebra over K together with a nondegeneratequadratic formN which satisfies

\[N(xy) = N(x)N(y)\,\]

for all x and y in A.

 

 

(정리) Hurwitz

the only composition algebras over \(\Bbb{R}\) are \(\Bbb{R}\), \(\Bbb{R}\), \(\Bbb{R}\), \(\Bbb{R}\)\Bbb{R} , \mathbb{C}, \mathbb H and \mathbb{O}

that is the real numbers, the complex numbers, the quaternions and the octonions.

 

 

 

 


 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학
  • 복소수
  • 외적
  • 사원수

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상