"1,2,4,8 과 1,3,7"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
12번째 줄: 12번째 줄:
 
<h5>프로베니우스의 정리</h5>
 
<h5>프로베니우스의 정리</h5>
  
* 실수 위에 정의된 유한차원 associative division algebras
+
* 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
* Frobenius’ theorem: any associative division algebra over R is isomorphic to R, C or H.
+
* 프로베니우스의 정리<br> any associative division algebra over R is isomorphic to R, C or H.<br>
  
 
 
 
 
  
<h5>Hurwitz's theorem for composition algebras (normed division algebras)</h5>
+
<h5>composition 대수에 관한 후르비츠의 정리 (normed division algebras)</h5>
  
 
* 결합법칙을 가정하지 않는 경우
 
* 결합법칙을 가정하지 않는 경우
 +
* 실수나 복소수위에 정의된
  
 
a '''normed division algebra'''<em style="">A</em> is a [http://en.wikipedia.org/wiki/Division_algebra division algebra] over the [http://en.wikipedia.org/wiki/Real_number real] or [http://en.wikipedia.org/wiki/Complex_number complex] numbers which is also a [http://en.wikipedia.org/wiki/Normed_vector_space normed vector space], with norm || · || satisfying the following property:
 
a '''normed division algebra'''<em style="">A</em> is a [http://en.wikipedia.org/wiki/Division_algebra division algebra] over the [http://en.wikipedia.org/wiki/Real_number real] or [http://en.wikipedia.org/wiki/Complex_number complex] numbers which is also a [http://en.wikipedia.org/wiki/Normed_vector_space normed vector space], with norm || · || satisfying the following property:
53번째 줄: 54번째 줄:
 
 
 
 
  
<h5>관련된 다른 주제들</h5>
+
 
 +
 
 +
<h5>관련된 항목들</h5>
  
 
* [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]]
 
* [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]]
61번째 줄: 64번째 줄:
 
 
 
 
  
<h5>관련도서 및 추천도서</h5>
+
 
 +
 
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 +
 
 +
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 +
* 발음사전 http://www.forvo.com/search/
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=norm
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>관련도서</h5>
  
 
*  General Cohomology Theory and K-Theory (London Mathematical Society Lecture Note Series) (Paperback)<br>
 
*  General Cohomology Theory and K-Theory (London Mathematical Society Lecture Note Series) (Paperback)<br>
 
** P. J. Hilton
 
** P. J. Hilton
 
*  On Quaternions and Octonions<br>
 
*  On Quaternions and Octonions<br>
** John H. Conway, Derek A. Smith
+
** John H. Conway, Derek A. Smith, A.K. Peters, 2003.
** A.K. Peters, 2003.
 
 
*  Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics<br>
 
*  Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics<br>
** Geoffrey Dixon
+
** Geoffrey Dixon, July 1994
** July 1994
 
 
* [http://www.math.cornell.edu/%7Ehatcher/VBKT/VBpage.html Vector Bundles & K-Theory]<br>
 
* [http://www.math.cornell.edu/%7Ehatcher/VBKT/VBpage.html Vector Bundles & K-Theory]<br>
 
** Allen Hatcher
 
** Allen Hatcher
82번째 줄: 104번째 줄:
 
 
 
 
  
<h5>참고할만한 자료</h5>
+
<h5>사전형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
* http://en.wikipedia.org/wiki/Division_algebra
+
* [http://en.wikipedia.org/wiki/Division_algebra ]http://en.wikipedia.org/wiki/Division_algebra
* http://en.wikipedia.org/wiki/Hurwitz%27s_theorem#Hurwitz.27s_theorem_for_composition_algebras
+
* [http://en.wikipedia.org/wiki/Hurwitz%27s_theorem_%28normed_division_algebras%29 http://en.wikipedia.org/wiki/Hurwitz's_theorem_(normed_division_algebras)]
 
* http://en.wikipedia.org/wiki/Composition_algebra
 
* http://en.wikipedia.org/wiki/Composition_algebra
 
* http://en.wikipedia.org/wiki/Normed_division_algebra
 
* http://en.wikipedia.org/wiki/Normed_division_algebra
* http://en.wikipedia.org/wiki/
 
* http://viswiki.com/en/
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
  
 
 
 
 
128번째 줄: 144번째 줄:
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
<h5>블로그</h5>
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
 
<h5>이미지 검색</h5>
 
 
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 
* http://images.google.com/images?q=
 
* [http://www.artchive.com/ http://www.artchive.com]
 
 
 
 
 
<h5>동영상</h5>
 
 
* http://www.youtube.com/results?search_type=&search_query=
 

2010년 8월 18일 (수) 09:52 판

간단한 소개
  • \(\mathbb R^n\) 은 division algebra이다 \(\iff\)\(n=1,2,4,8\)
  • \(S^n\) 는 H-space 이다. \(\iff\)\(n=0,1,3,7\)
  • \(S^n\) 은 n개의 일차독립인 벡터장을 갖는다 \(\iff\)\(n=0,1,3,7\)
  • fiber 번들 \(S^p \to S^q \to S^r\) 이 존재한다. \(\iff\)\((p,q,r) = (0,1,1),(1,3,2),(3,7,4),(7,15,8)\)

 

 

프로베니우스의 정리
  • 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
  • 프로베니우스의 정리
    any associative division algebra over R is isomorphic to R, C or H.

 

composition 대수에 관한 후르비츠의 정리 (normed division algebras)
  • 결합법칙을 가정하지 않는 경우
  • 실수나 복소수위에 정의된

a normed division algebraA is a division algebra over the real or complex numbers which is also a normed vector space, with norm || · || satisfying the following property:

\[\|xy\| = \|x\| \|y\|\] for all x and y in A.


composition algebraA over a fieldK is a unital (but not necessarily associative) algebra over K together with a nondegeneratequadratic formN which satisfies

\[N(xy) = N(x)N(y)\,\]

for all x and y in A.

 

Normed division algebras are a special case of composition algebras

 

(정리) Hurwitz

The only composition algebras over \(\Bbb{R}\) are \(\Bbb{R}\),\(\Bbb{C}\), \(\Bbb{H}\), and \(\Bbb{O}\) , that is the real numbers, the complex numbers, the quaternions and the octonions.

 

 

관련된 고교수학 또는 대학수학

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

 

 

관련도서

 

사전형태의 자료

 

 

관련논문

 

 

 

관련기사