"1,2,4,8 과 1,3,7"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
12번째 줄: | 12번째 줄: | ||
<h5>프로베니우스의 정리</h5> | <h5>프로베니우스의 정리</h5> | ||
− | * 실수 위에 정의된 | + | * 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras |
− | * | + | * 프로베니우스의 정리<br> any associative division algebra over R is isomorphic to R, C or H.<br> |
− | <h5> | + | <h5>composition 대수에 관한 후르비츠의 정리 (normed division algebras)</h5> |
* 결합법칙을 가정하지 않는 경우 | * 결합법칙을 가정하지 않는 경우 | ||
+ | * 실수나 복소수위에 정의된 | ||
a '''normed division algebra'''<em style="">A</em> is a [http://en.wikipedia.org/wiki/Division_algebra division algebra] over the [http://en.wikipedia.org/wiki/Real_number real] or [http://en.wikipedia.org/wiki/Complex_number complex] numbers which is also a [http://en.wikipedia.org/wiki/Normed_vector_space normed vector space], with norm || · || satisfying the following property: | a '''normed division algebra'''<em style="">A</em> is a [http://en.wikipedia.org/wiki/Division_algebra division algebra] over the [http://en.wikipedia.org/wiki/Real_number real] or [http://en.wikipedia.org/wiki/Complex_number complex] numbers which is also a [http://en.wikipedia.org/wiki/Normed_vector_space normed vector space], with norm || · || satisfying the following property: | ||
53번째 줄: | 54번째 줄: | ||
− | <h5>관련된 | + | |
+ | |||
+ | <h5>관련된 항목들</h5> | ||
* [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] | * [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] | ||
61번째 줄: | 64번째 줄: | ||
− | <h5>관련도서 | + | |
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | ||
+ | |||
+ | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=norm | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서</h5> | ||
* General Cohomology Theory and K-Theory (London Mathematical Society Lecture Note Series) (Paperback)<br> | * General Cohomology Theory and K-Theory (London Mathematical Society Lecture Note Series) (Paperback)<br> | ||
** P. J. Hilton | ** P. J. Hilton | ||
* On Quaternions and Octonions<br> | * On Quaternions and Octonions<br> | ||
− | ** John H. Conway, Derek A. Smith | + | ** John H. Conway, Derek A. Smith, A.K. Peters, 2003. |
− | |||
* Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics<br> | * Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics<br> | ||
− | ** Geoffrey Dixon | + | ** Geoffrey Dixon, July 1994 |
− | |||
* [http://www.math.cornell.edu/%7Ehatcher/VBKT/VBpage.html Vector Bundles & K-Theory]<br> | * [http://www.math.cornell.edu/%7Ehatcher/VBKT/VBpage.html Vector Bundles & K-Theory]<br> | ||
** Allen Hatcher | ** Allen Hatcher | ||
82번째 줄: | 104번째 줄: | ||
− | <h5> | + | <h5>사전형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
− | * http://en.wikipedia.org/wiki/Division_algebra | + | * [http://en.wikipedia.org/wiki/Division_algebra ]http://en.wikipedia.org/wiki/Division_algebra |
− | * http://en.wikipedia.org/wiki/Hurwitz% | + | * [http://en.wikipedia.org/wiki/Hurwitz%27s_theorem_%28normed_division_algebras%29 http://en.wikipedia.org/wiki/Hurwitz's_theorem_(normed_division_algebras)] |
* http://en.wikipedia.org/wiki/Composition_algebra | * http://en.wikipedia.org/wiki/Composition_algebra | ||
* http://en.wikipedia.org/wiki/Normed_division_algebra | * http://en.wikipedia.org/wiki/Normed_division_algebra | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
128번째 줄: | 144번째 줄: | ||
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2010년 8월 18일 (수) 09:52 판
간단한 소개
- \(\mathbb R^n\) 은 division algebra이다 \(\iff\)\(n=1,2,4,8\)
- \(S^n\) 는 H-space 이다. \(\iff\)\(n=0,1,3,7\)
- \(S^n\) 은 n개의 일차독립인 벡터장을 갖는다 \(\iff\)\(n=0,1,3,7\)
- fiber 번들 \(S^p \to S^q \to S^r\) 이 존재한다. \(\iff\)\((p,q,r) = (0,1,1),(1,3,2),(3,7,4),(7,15,8)\)
프로베니우스의 정리
- 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
- 프로베니우스의 정리
any associative division algebra over R is isomorphic to R, C or H.
composition 대수에 관한 후르비츠의 정리 (normed division algebras)
- 결합법칙을 가정하지 않는 경우
- 실수나 복소수위에 정의된
a normed division algebraA is a division algebra over the real or complex numbers which is also a normed vector space, with norm || · || satisfying the following property:
\[\|xy\| = \|x\| \|y\|\] for all x and y in A.
composition algebraA over a fieldK is a unital (but not necessarily associative) algebra over K together with a nondegeneratequadratic formN which satisfies
\[N(xy) = N(x)N(y)\,\]
for all x and y in A.
Normed division algebras are a special case of composition algebras
(정리) Hurwitz
The only composition algebras over \(\Bbb{R}\) are \(\Bbb{R}\),\(\Bbb{C}\), \(\Bbb{H}\), and \(\Bbb{O}\) , that is the real numbers, the complex numbers, the quaternions and the octonions.
관련된 고교수학 또는 대학수학
- 복소수
- 외적
- 사원수
관련된 항목들
- 해밀턴의 사원수
- Parallelizability of Spheres
- 호프 fibrations
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
관련도서
- General Cohomology Theory and K-Theory (London Mathematical Society Lecture Note Series) (Paperback)
- P. J. Hilton
- On Quaternions and Octonions
- John H. Conway, Derek A. Smith, A.K. Peters, 2003.
- Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics
- Geoffrey Dixon, July 1994
- Vector Bundles & K-Theory
- Allen Hatcher
- 도서내검색
- 도서검색
사전형태의 자료
- http://ko.wikipedia.org/wiki/
- [1]http://en.wikipedia.org/wiki/Division_algebra
- http://en.wikipedia.org/wiki/Hurwitz's_theorem_(normed_division_algebras)
- http://en.wikipedia.org/wiki/Composition_algebra
- http://en.wikipedia.org/wiki/Normed_division_algebra
관련논문
- The Scarcity of Cross Products on Euclidean Spaces
- Bertram Walsh, The American Mathematical Monthly, Vol. 74, No. 2 (Feb., 1967), pp. 188-194
- Cross Products of Vectors in Higher Dimensional Euclidean Spaces
- W. S. Massey, The American Mathematical Monthly, Vol. 90, No. 10 (Dec., 1983), pp. 697-701
- On the Non-Existence of Elements of Hopf Invariant One
- J. F. Adams, The Annals of Mathematics, Second Series, Vol. 72, No. 1 (Jul., 1960), pp. 20-104
- The Octonions
- John Baez, AMS 2001
- The Impossibility of a Division Algebra of Vectors in Three Dimensional Space
- Kenneth O. May, The American Mathematical Monthly, Vol. 73, No. 3 (Mar., 1966), pp. 289-291
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=