"1,2,4,8 과 1,3,7"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/2061732">추상대수학의 토픽들</a>페이지로 이동하였습니다.)
(차이 없음)

2010년 8월 18일 (수) 22:50 판

간단한 소개
  • \(\mathbb R^n\) 은 division algebra이다 \(\iff\)\(n=1,2,4,8\)
  • \(S^n\) 는 H-space 이다. \(\iff\)\(n=0,1,3,7\)
  • \(S^n\) 은 n개의 일차독립인 벡터장을 갖는다 \(\iff\)\(n=0,1,3,7\)
  • fiber 번들 \(S^p \to S^q \to S^r\) 이 존재한다. \(\iff\)\((p,q,r) = (0,1,1),(1,3,2),(3,7,4),(7,15,8)\)

 

 

프로베니우스의 정리
  • 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
  • 프로베니우스의 정리
    any associative division algebra over R is isomorphic to R, C or H.

 

composition 대수에 관한 후르비츠의 정리 (normed division algebras)
  • 결합법칙을 가정하지 않는 경우
  • 실수나 복소수위에 정의된

a normed division algebraA is a division algebra over the real or complex numbers which is also a normed vector space, with norm || · || satisfying the following property:

\[\|xy\| = \|x\| \|y\|\] for all x and y in A.


composition algebraA over a fieldK is a unital (but not necessarily associative) algebra over K together with a nondegeneratequadratic formN which satisfies

\[N(xy) = N(x)N(y)\,\]

for all x and y in A.

 

Normed division algebras are a special case of composition algebras

 

(정리) Hurwitz

The only composition algebras over \(\Bbb{R}\) are \(\Bbb{R}\),\(\Bbb{C}\), \(\Bbb{H}\), and \(\Bbb{O}\) , that is the real numbers, the complex numbers, the quaternions and the octonions.

 

 

관련된 고교수학 또는 대학수학

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

 

 

관련도서

 

사전형태의 자료

 

 

관련논문

 

 

 

관련기사