"다변수미적분학"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
58번째 줄: 58번째 줄:
  
 
*  전자기학<br>
 
*  전자기학<br>
** [[search?q=%EB%A7%A5%EC%8A%A4%EC%9B%B0%EB%B0%A9%EC%A0%95%EC%8B%9D&parent id=1942998|맥스웰방정식]]
+
** [[맥스웰 방정식|맥스웰방정식]]
 
* [[미분기하학]]
 
* [[미분기하학]]
 
* 편미분방정식
 
* 편미분방정식
88번째 줄: 88번째 줄:
 
* [http://www.amazon.com/Div-Grad-Curl-All-That/dp/0393969975 Div, Grad, Curl, and All That: An Informal Text on Vector Calculus]<br>
 
* [http://www.amazon.com/Div-Grad-Curl-All-That/dp/0393969975 Div, Grad, Curl, and All That: An Informal Text on Vector Calculus]<br>
 
**  H. M. Schey<br>
 
**  H. M. Schey<br>
 +
*   <br>
  
 
<h5>참고할만한 도서 및 자료</h5>
 
<h5>참고할만한 도서 및 자료</h5>

2009년 10월 12일 (월) 17:59 판

간단한 요약
  • 다변수 함수의 미분과 적분을 공부함.
  • 라그랑지 승수 법칙과 헤세판정법을 통해, 함수의 최대최소값 구하는 기술을 배움.
  • '미적분학의 기본정리'의 다변수 확장 버전인 '스토크스 정리' 를 공부함.

 

선수 과목 또는 알고 있으면 좋은 것들

 

다루는 대상
  • 곡선, 곡면, n차원 공간
  • 벡터장

 

중요한 개념 및 정리
  • 편미분
  • 미분연산자
    • grad
    • div
    • curl
      • 외적
  • 라그랑지 승수 법칙
  • 헤세판정법
    • 모스 보조정리 (Morse lemma)
  • 다중적분
  • 좌표변환
    • 자코비안과 행렬식
    • 극좌표계
    • 구면좌표계
    • 원통좌표계
    • 치환적분법
  • 그린 정리, 발산 정리, 스토크스 정리
    • 미분형식으로 표현되는 스토크스 정리의 특별한 경우로 생각할 수 있음.

 

유명한 정리 혹은 재미있는 문제

 

다른 과목과의 관련성

 

 

관련된 대학원 과목 또는 더 공부하면 좋은 것들
  • 미분형식 (differential forms)
    • 스토크스 정리를 고차원으로 일반화하기 위해서는, 미분다양체와 미분형식의 언어가 필요함
  • 미분다양체론

 

표준적인 교과서

 

 

추천도서 및 보조교재
참고할만한 도서 및 자료