"다이감마 함수(digamma function)"의 두 판 사이의 차이
31번째 줄: | 31번째 줄: | ||
<math>\psi(1 - x) - \psi(x) = \pi\,\!\cot{ \left ( \pi x \right ) }</math> | <math>\psi(1 - x) - \psi(x) = \pi\,\!\cot{ \left ( \pi x \right ) }</math> | ||
+ | |||
+ | 여기서 <math>x</math>를 <math>-x</math>로 두면 다음을 얻는다 | ||
<math>\psi(1 + x) = \psi(-x) -\pi\,\!\cot{ \left ( \pi x \right ) }</math> | <math>\psi(1 + x) = \psi(-x) -\pi\,\!\cot{ \left ( \pi x \right ) }</math> | ||
40번째 줄: | 42번째 줄: | ||
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">덧셈공식</h5> | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">덧셈공식</h5> | ||
− | <math>\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2 | + | * [[감마함수]]의 곱셈공식 <br><math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math><br> |
− | + | * 위의 식을 로그미분 하여 다음을 얻을 수 있음<br><math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math><br><math>\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2</math><br> | |
− | <math>\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2</math> | ||
158번째 줄: | 159번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5> | ||
− | * Methods of Summation | + | * [http://books.google.com/books?id=yoGvQAAACAAJ Methods of Summation]<br> |
+ | ** Bertram Ross | ||
* 도서내검색<br> | * 도서내검색<br> | ||
− | ** http://books.google.com/books?q= | + | ** http://books.google.com/books?q=Methods+of+Summation |
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= | ||
* 도서검색<br> | * 도서검색<br> |
2010년 2월 27일 (토) 09:42 판
이 항목의 스프링노트 원문주소
개요
- 감마함수의 로그미분으로 정의
\(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\)
- 차분방정식의 공부에서 자연스럽게 등장함.
차분방정식과의 관계
\(\psi(x + 1) = \psi(x) + \frac{1}{x}\)
반사공식
- 감마함수의 반사공식
\(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\) - 위의 식을 로그미분하여 다음을 얻는다
\(\psi(1 - x) - \psi(x) = \pi\,\!\cot{ \left ( \pi x \right ) }\)
여기서 \(x\)를 \(-x\)로 두면 다음을 얻는다
\(\psi(1 + x) = \psi(-x) -\pi\,\!\cot{ \left ( \pi x \right ) }\)
덧셈공식
- 감마함수의 곱셈공식
\(2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\) - 위의 식을 로그미분 하여 다음을 얻을 수 있음
\(2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\)
\(\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2\)
가우스의 Digamma 정리
\(\psi\left(\frac{m}{k}\right) = -\gamma -\ln(2k) -\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lceil (k-1)/2\rceil} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right)\)
special values
\(\psi(1) = -\gamma\,\!\)
\(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)
\(\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma\)
\(\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma\)
\(\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma\)
\(\psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Digamma_function
- http://www76.wolframalpha.com/input/?i=Digamma+function
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Linear independence of digamma function and a variant of a conjecture of Rohrlich
- Sanoli Gun, M. Ram Murty, and Purusottam Rath, Journal of Number Theory, Volume 129, Issue 8, August 2009, Pages 1858-1873
관련도서
- Methods of Summation
- Bertram Ross
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)