"다이로그 함수(dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
*  dilogarithm 함수는 복소수 <math>|z|<1</math>에 대하여 다음과 같이 정의됨<br><math>\operatorname{Li}_2(z)= \sum_{n=1}^\infty {z^n \over n^2}</math><br>
 
*  dilogarithm 함수는 복소수 <math>|z|<1</math>에 대하여 다음과 같이 정의됨<br><math>\operatorname{Li}_2(z)= \sum_{n=1}^\infty {z^n \over n^2}</math><br>
 +
* <math>|z|\leq 1</math> 에ㅐ서
 
*  다음과 같은 적분으로 정의하면 해석적으로 확장가능<br><math>\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math> for <math>z\in \mathbb C-[1,\infty)</math><br>
 
*  다음과 같은 적분으로 정의하면 해석적으로 확장가능<br><math>\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math> for <math>z\in \mathbb C-[1,\infty)</math><br>
 +
*  
  
 
 
 
 
174번째 줄: 176번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
*  제안용어<br>
 
*  제안용어<br>
 
** 쌍로그, 이중로그 ??
 
** 쌍로그, 이중로그 ??
* http://www.google.com/dictionary?langpair=en|ko&q=di
+
* [http://www.google.com/dictionary?langpair=en%7Cko&q=di http://www.google.com/dictionary?langpair=en|ko&q=di]
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=di&page=5<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=di&page=5<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=dilogarithm
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=dilogarithm
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
 
 
 
188번째 줄: 190번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
 
* http://en.wikipedia.org/wiki/Polylogarithm
 
* http://en.wikipedia.org/wiki/Polylogarithm
232번째 줄: 234번째 줄:
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
<br>
 

2009년 11월 15일 (일) 06:35 판

간단한 소개
  • dilogarithm 함수는 복소수 \(|z|<1\)에 대하여 다음과 같이 정의됨
    \(\operatorname{Li}_2(z)= \sum_{n=1}^\infty {z^n \over n^2}\)
  • \(|z|\leq 1\) 에ㅐ서
  • 다음과 같은 적분으로 정의하면 해석적으로 확장가능
    \(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \) for \(z\in \mathbb C-[1,\infty)\)
  •  

 

여러가지 항등식
  • 오일러의 반사공식

\(\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\), \(0<x<1\)

  • 반전공식
    \(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)\)
  • 란덴의 항등식

\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x)\) 또는

\(\mbox{Li}_2(1-x)+\mbox{Li}_2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)\)

 

 

곱셈공식
  • 제곱공식
    \(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\)
    \(\frac{1}{2}\mbox{Li}_2(x^2)=\mbox{Li}_2(x)+\mbox{Li}_2(-x)\)
  • 일반적인 곱셈공식
    \(\frac{1}{n} \operatorname{Li}_2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_2\left(e^{2\pi i k/n}z\right)\)

 

 

 

Special values
  • 다음 여덟 경우만이 알려져 있음.

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

 

 

special value의 계산
  • \(\mbox{Li}_{2}(-1)\) 의 계산

반전공식에 \(x=-1\) 을 대입하여 얻을 수 있다.

 

  • \(\mbox{Li}_{2}(\frac{1}{2})\) 의 계산

오일러의 반사공식에서 \(x=\frac{1}{2}\) 를 대입하여 얻을 수 있다.

또는 

\(\zeta(2)=\sum_{1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}\) 와 

\(\frac{\pi^2}{12}=\sum_{1}^{\infty}\frac{2}{(2n)^2}=\sum_{1}^{\infty}\frac{1+(-1)^n}{n^2}=\sum_{1}^{\infty}\frac{1}{n^2}+\sum_{1}^{\infty}\frac{(-1)^n}{n^2}=\frac{\pi^2}{6}+\sum_{1}^{\infty}\frac{(-1)^n}{n^2}\)

를 이용하여 보일 수 있다.

 

  • \(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})\) 과 \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})\) 의 계산

오일러의 반사공식에 \(x=\frac{3-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})\)

란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.

\(\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2\)

여기에 \(x=\frac{1-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})\)

 

이제 위에서 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. 

  • \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})\) 의 계산

제곱공식\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\) 에 \(x=\frac{1-\sqrt{5}}{2}\) 를 대입하면, 

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2}) =2(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}))\) 를 얻는다.

 

 

  • \(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})\) 의 계산

반전공식에 \(x=\frac{-1-\sqrt{5}}{2}\)를 대입하면, \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2}) =\frac{\pi^2}{6}-\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\) 를 얻는다.

 

 

다른 special values

\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

(증명)





 

 


 

 


 

 

\(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

 

 

재미있는 사실
  • Don Zagier

The dilogarithm is the only mathematical function with a sense of humor.

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련도서 및 추천도서

 

 

관련논문

 

블로그