"대수적수론"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>간단한 요약</h5>
 
<h5>간단한 요약</h5>
  
*  
+
* 대수적수와 대수적정수의 성질에 대해 연구하는 정수론의 분야
 +
 
 +
 
 +
 
 +
<h5>대수적수와 대수적정수</h5>
 +
 
 +
*  유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.<br><math>a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}</math><br>
 +
*  복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방<br>
  
 
 
 
 
58번째 줄: 65번째 줄:
 
<h5>참고할만한 자료</h5>
 
<h5>참고할만한 자료</h5>
  
 +
* [http://ko.wikipedia.org/wiki/%EB%8C%80%EC%88%98%EC%A0%81_%EC%88%98 http://ko.wikipedia.org/wiki/대수적_수]
 +
* http://en.wikipedia.org/wiki/algebraic_number_theory
 
* [http://www.jstor.org/stable/2691370 The Roots of Commutative Algebra in Algebraic Number Theory]<br>
 
* [http://www.jstor.org/stable/2691370 The Roots of Commutative Algebra in Algebraic Number Theory]<br>
 
** Israel Kleiner
 
** Israel Kleiner
64번째 줄: 73번째 줄:
 
** B.Mazur
 
** B.Mazur
 
** from '<em style="">The Princeton companion to mathematics</em>'
 
** from '<em style="">The Princeton companion to mathematics</em>'
 +
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.wolframalpha.com/input/?i=
 +
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 +
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 +
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 +
 +
*  네이버 뉴스 검색 (키워드 수정)<br>
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
 +
 +
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 +
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이미지 검색</h5>
 +
 +
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 +
* http://images.google.com/images?q=
 +
* [http://www.artchive.com/ http://www.artchive.com]
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">동영상</h5>
 +
 +
*  http://www.youtube.com/results?search_type=&search_query=<br><br><br>

2009년 6월 16일 (화) 17:30 판

간단한 요약
  • 대수적수와 대수적정수의 성질에 대해 연구하는 정수론의 분야

 

대수적수와 대수적정수
  • 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
    \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\)
  • 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방

 

선수 과목 또는 알고 있으면 좋은 것들

 

다루는 대상

 

 

중요한 개념 및 정리
  • 주어진 prime ideal은 체확장을 통해 어떻게 쪼개지는가
  • 디리클레 unit theorem
  • Class number의 유한성

 

유명한 정리 혹은 생각할만한 문제

 

 

다른 과목과의 관련성

 

 

관련된 대학원 과목 또는 더 공부하면 좋은 것들

 

 

표준적인 교과서

 

 

추천도서 및 보조교재

 

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상