"데데킨트 에타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
28번째 줄: | 28번째 줄: | ||
<h5>유리수점(cusp) 근처에서의 변화</h5> | <h5>유리수점(cusp) 근처에서의 변화</h5> | ||
− | * <math>y>0</math>가 매우 작을 때,<br><math>\sqrt{y}\exp({\frac{\pi}{12k^2y}})\eta(\frac{h}{k}+iy)\sim \frac{ | + | * <math>y>0</math>가 매우 작을 때,<br><math>\sqrt{y}\exp({\frac{\pi}{12k^2y}})\eta(\frac{h}{k}+iy)\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}</math><br><math>s(h,k)</math>는 [[데데킨트 합]]<br> |
+ | |||
+ | |||
<h5>판별식함수</h5> | <h5>판별식함수</h5> | ||
− | |||
− | |||
* [[판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)|판별식 (discriminant) 함수]] | * [[판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)|판별식 (discriminant) 함수]] |
2010년 1월 13일 (수) 19:10 판
이 항목의 스프링노트 원문주소
개요
- 무한곱으로 정의되는 모듈라 형식(weight 1/2)
\(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) - 데데킨트 합
- 자연수의 분할수(integer partitions) 의 연구에 중요한 역할
모듈라 성질
- (정리)
\(\eta(-\frac{1}{\tau}) =\sqrt{\frac{\tau}{i}}\eta(\tau)=\sqrt{-i\tau}\eta({\tau})\)
여기서 \(-\frac{\pi}{4}<\arg \sqrt{-i\tau}<\frac{\pi}{4}\) 이 되도록 선택 - 더 일반적으로, \(ad-bc=1\), \(c>0\)인 정수 a,b,c,d에 대하여 다음이 성립한다.
\(\eta \left( \frac {a\tau+b} {c\tau+d}\right) =\epsilon(a,b,c,d) \{-i\left(c\tau+d\right)\}^{1/2}\eta(\tau)\)
여기서,
\(\epsilon(a,b,c,d)=\exp\{\pi i \left(\frac{a+d}{12c}+s(-d,c)\right)\}\)
\(s(h,k)\)는 데데킨트 합
유리수점(cusp) 근처에서의 변화
- \(y>0\)가 매우 작을 때,
\(\sqrt{y}\exp({\frac{\pi}{12k^2y}})\eta(\frac{h}{k}+iy)\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}\)
\(s(h,k)\)는 데데킨트 합
판별식함수
- 판별식 (discriminant) 함수
- 에타함수의 24제곱은 weight 12인 cusp 형식이 되므로, discriminant 함수가 된다
\(\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)
special values
\(\eta(i)=\frac{\Gamma(\frac{1}{4})}{2 \pi ^{3/4}}\)
\(\eta(2i)=\frac{\Gamma \left(\frac{1}{4}\right)}{2^{11/8} \pi ^{3/4}}\)
\(\eta(\frac{i}{2})=\frac{\Gamma \left(\frac{1}{4}\right)}{2^{7/8} \pi ^{3/4}}\)
재미있는 사실
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dedekind_eta_function
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련논문
- Missed opportunities
- Freeman J. Dyson, Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652.
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=