"데데킨트 제타함수"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
− | + | * [[#]] | |
17번째 줄: | 17번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5> | ||
− | 수체 <math>K</math>에 대하여, [[데데킨트 제타함수]]는 다음과 같이 정의됨 | + | * 수체 <math>K</math>에 대하여, [[데데킨트 제타함수]]는 다음과 같이 정의됨<br><math>\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}</math><br> |
+ | * 각각의 ideal class <math>A\in C_K</math> 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의<br><math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)</math> | ||
− | + | ||
− | + | 더 일반적으로 준동형사상 <math>\chi \colon C_K \to \mathbb C^{*}</math>에 대하여 | |
− | <math>\ | + | <math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)</math> |
29번째 줄: | 34번째 줄: | ||
− | <math>\ | + | |
+ | |||
+ | 일반적으로 <math>{d_K}=d_1d_2</math>에 대응되는 genus character <math>\chi \colon I_K \to \mathbb C^{*}</math> (<math>\chi \colon C_K \to \mathbb C^{*}</math>) 를 정의할 수 있다. | ||
− | + | <math>\chi \colon I_K \to \mathbb C^{*}</math> (<math>\chi \colon C_K \to \mathbb C^{*}</math>)에 대하여 | |
+ | |||
+ | <math>L(\chi,s) =L_{d_1}(s)L_{d_2}(s)</math> | ||
− | <math> | + | 위에서 언급한 경우는 <math>{d_K}=1\cdot d_K</math> 에 해당 |
+ | |||
+ | <math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}</math> | ||
2009년 11월 4일 (수) 16:48 판
이 항목의 스프링노트 원문주소
기호
\(K\) 수체
\(C_K\) ideal class group
간단한 소개
- 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨
\(\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\) - 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의
\(\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\)
\(\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\)
더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여
\(L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\)
일반적으로 \({d_K}=d_1d_2\)에 대응되는 genus character \(\chi \colon I_K \to \mathbb C^{*}\) (\(\chi \colon C_K \to \mathbb C^{*}\)) 를 정의할 수 있다.
\(\chi \colon I_K \to \mathbb C^{*}\) (\(\chi \colon C_K \to \mathbb C^{*}\))에 대하여
\(L(\chi,s) =L_{d_1}(s)L_{d_2}(s)\)
위에서 언급한 경우는 \({d_K}=1\cdot d_K\) 에 해당
\(L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dedekind_zeta_function
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)