"데데킨트 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
+
* [[#]]
  
 
 
 
 
17번째 줄: 17번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
  
수체 <math>K</math>에 대하여, [[데데킨트 제타함수]]는 다음과 같이 정의됨
+
수체 <math>K</math>에 대하여, [[데데킨트 제타함수]]는 다음과 같이 정의됨<br><math>\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}</math><br>
 +
*  각각의 ideal class <math>A\in C_K</math> 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의<br><math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math><br>
 +
 
 +
 
 +
 
 +
<math>\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)</math>
  
<math>\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}</math>
+
 
  
각각의 ideal class <math>A\in C_K</math> 에 대하여,
+
더 일반적으로 준동형사상 <math>\chi \colon C_K \to \mathbb C^{*}</math>에 대하여
  
<math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math>
+
<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)</math>
  
 
 
 
 
29번째 줄: 34번째 줄:
 
 
 
 
  
<math>\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)</math>
+
 
 +
 
 +
일반적으로 <math>{d_K}=d_1d_2</math>에 대응되는 genus character <math>\chi \colon I_K \to \mathbb C^{*}</math>  (<math>\chi \colon C_K \to \mathbb C^{*}</math>) 를 정의할 수 있다.
  
 
 
 
 
  
더 일반적으로 준동형사상 <math>\chi \colon C_K \to \mathbb C^{*}</math>에 대하여
+
<math>\chi \colon I_K \to \mathbb C^{*}</math>  (<math>\chi \colon C_K \to \mathbb C^{*}</math>)에 대하여
 +
 
 +
<math>L(\chi,s) =L_{d_1}(s)L_{d_2}(s)</math>
  
<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)</math>
+
위에서 언급한 경우는 <math>{d_K}=1\cdot d_K</math> 에 해당
  
 
 
 
 
 +
 +
<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}</math>
  
 
 
 
 

2009년 11월 4일 (수) 16:48 판

이 항목의 스프링노트 원문주소

 

기호

\(K\) 수체

\(C_K\)  ideal class group

 

 

간단한 소개
  • 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨
    \(\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\)
  • 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의
    \(\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\)

 

\(\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\)

 

더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여

\(L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\)

 

 

 

일반적으로 \({d_K}=d_1d_2\)에 대응되는 genus character \(\chi \colon I_K \to \mathbb C^{*}\)  (\(\chi \colon C_K \to \mathbb C^{*}\)) 를 정의할 수 있다.

 

\(\chi \colon I_K \to \mathbb C^{*}\)  (\(\chi \colon C_K \to \mathbb C^{*}\))에 대하여

\(L(\chi,s) =L_{d_1}(s)L_{d_2}(s)\)

위에서 언급한 경우는 \({d_K}=1\cdot d_K\) 에 해당

 

\(L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그