데데킨트 제타함수

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨

\[\zeta_{K}(s):=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}\]


기호

  • \(K\) 수체
  • \(C_K\) ideal class group


함수방정식

  • 리만제타함수 의 함수방정식\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)\]\[\xi(s) = \xi(1 - s)\]
  • 리만제타함수는 \(K=\mathbb{Q}\) 인 경우, 즉 \(\zeta(s)=\zeta_{\mathbb{Q}}(s)\)
  • 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립\[\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)\]\[\xi_{K}(s) = \xi_{K}(1 - s)\]


디리클레 유수 공식

\[ \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}\]

  • \(s=0\) 에서 order 가 \(r_1+r_2-1\) 인 zero를 가지며 다음이 성립한다\[ \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}\]



부분제타함수

  • 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의\[\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\]
  • 제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨\[\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\]
  • 더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음\[L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\]





special values

클링겐-지겔 (Klingen-Siegel) 정리

\[\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}\]

Zagier, Bloch, Suslin

  • \([K : \mathbb{Q}] = r_1 + 2r_2\)일 때,

\[\zeta_{K}(2)\sim_{\mathbb{Q^{\times}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\] 여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 \(\mathbb{Q}\)-basis D는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm) 함수이며, \(a\sim_{\mathbb{Q^{\times}}} b\) 는 \(a/b\in\mathbb{Q}\) 를 의미함



역사



메모



관련된 항목들


계산 리소스


사전 형태의 자료



리뷰, 에세이, 강의노트



관련논문

노트

말뭉치

  1. In particular some of these pairs have different class numbers, so the Dedekind zeta function of a number field does not determine its class number.[1]
  2. For K K a number field then all special values of the Dedekind zeta function ζ K ( n ) \zeta_K(n) for integer n n happen to be periods (MO comment).[2]
  3. Just like the Riemann zeta function, each Dedekind zeta function possesses a functional equation.[3]
  4. The nontrivial zeros of the Dedekind zeta function of any algebraic number eld lie on the critical line: Re(s) = 1/2.[4]
  5. Theorem Let X be a group of Dirichlet characters, K the associated eld, and K (s) the Dedekind zeta function of K .[4]
  6. From there, we discuss algebraic number elds and introduce the tools needed to dene the Dedekind zeta function.[5]
  7. 1 2 FRIMPONG A. BAIDOO necessary for providing context to the Dedekind zeta function.[5]
  8. In section 9, we then dene the Dedekind zeta function, describe the ideal class group and then highlight the Dedekind zeta functions role in the class number formula.[5]
  9. I was trying to learn a little about the Dedekind zeta function.[6]
  10. For a cubic extension K 3 /ℚ, which is not normal, new results on the behavior of mean values of the Dedekind zeta function of the field K 3 in the critical strip are obtained.[7]
  11. We study analytic aspects of the Dedekind zeta function of a Galois extension.[8]
  12. In the rst part of this thesis we give a formula for the second moment of the Dedekind zeta function of a quadratic eld times an arbitrary Dirichlet polynomial of length T 1/11(cid:15).[8]
  13. In the second part, we derive a hybrid Euler-Hadamard product for the Dedekind zeta function of an arbitrary number eld.[8]
  14. We then conjecture that the 2kth moment of the Dedekind zeta function of a Galois extension is given by the product of the two.[8]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'dedekind'}, {'LOWER': 'zeta'}, {'LOWER': 'function'}]
  • [{'LOWER': 'dedekind'}, {'LOWER': "'s"}, {'LOWER': 'zeta'}, {'LOWER': 'function'}]