원분체의 데데킨트 제타함수

수학노트
이동: 둘러보기, 검색

개요



데데킨트 제타함수의 분해

  • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\)
  • modulo n 인 디리클레 캐릭터 들의 집합 \(\hat{G}\)을 생각하자
  • 디리클레 캐릭터\(\chi\in \hat{G}\) 는 적당한 conductor \(f|n\) 을 갖는 원시(primitive) 디리클레 character \(\chi_{f}\)로부터 얻어진다.
정리

다음이 성립한다 \[\zeta_K(s)=\prod_{\chi\in \tilde{G}}L(\chi_{f},s)\]

따름정리

등차수열의 소수분포에 관한 디리클레 정리


\(K = \mathbb Q(\zeta_3)=\mathbb{Q}(\sqrt{-3})\)의 경우

  • \(d_K=-3\)
  • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/3\mathbb{Z})^\times =\{1,2\}\)
  • \(\hat{G}=\{1,\chi\}\)\[\chi(a)=\left(\frac{a}{3}\right)\]
  • \(1\in \hat{G}\)의 conductor는 1
  • \(\chi\in\hat{G}\)의 conductor는 3
  • 따라서 제타함수의 분해는 다음과 같음

\[\zeta_{K}(s)=\zeta(s)L(\chi,s)\]


\(K = \mathbb Q(\zeta_4)=\mathbb{Q}(\sqrt{-1})\)의 경우

  • \(d_K=-4\)
  • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/4\mathbb{Z})^\times =\{1,3\}\)
  • \(\hat{G}=\{1,\chi\}\)\[\chi(a)=\left(\frac{-4}{a}\right)=\left(\frac{-1}{a}\right)\]
  • \(1\in \hat{G}\)의 conductor는 1
  • \(\chi\in\hat{G}\)의 conductor는 4
  • 따라서 제타함수의 분해는 다음과 같음

\[\zeta_{K}(s)=\zeta(s)L(\chi,s)\]


역사



메모



관련된 항목들


매스매티카 파일 및 계산 리소스