원분체의 데데킨트 제타함수
둘러보기로 가기
검색하러 가기
개요
- \(K = \mathbb Q(\zeta_n)\)에 대한 데데킨트 제타함수\[\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\]
- 디리클레 L-함수의 곱으로 분해할 수 있다
- 디리클레 캐릭터의 conductor 개념이 중요
데데킨트 제타함수의 분해
- \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\)
- modulo n 인 디리클레 캐릭터 들의 집합 \(\hat{G}\)을 생각하자
- 각 디리클레 캐릭터\(\chi\in \hat{G}\) 는 적당한 conductor \(f|n\) 을 갖는 원시(primitive) 디리클레 character \(\chi_{f}\)로부터 얻어진다.
- 정리
다음이 성립한다 \[\zeta_K(s)=\prod_{\chi\in \tilde{G}}L(\chi_{f},s)\]
- 따름정리
예
\(K = \mathbb Q(\zeta_3)=\mathbb{Q}(\sqrt{-3})\)의 경우
- \(d_K=-3\)
- \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/3\mathbb{Z})^\times =\{1,2\}\)
- \(\hat{G}=\{1,\chi\}\)\[\chi(a)=\left(\frac{a}{3}\right)\]
- \(1\in \hat{G}\)의 conductor는 1
- \(\chi\in\hat{G}\)의 conductor는 3
- 따라서 제타함수의 분해는 다음과 같음
\[\zeta_{K}(s)=\zeta(s)L(\chi,s)\]
\(K = \mathbb Q(\zeta_4)=\mathbb{Q}(\sqrt{-1})\)의 경우
- \(d_K=-4\)
- \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/4\mathbb{Z})^\times =\{1,3\}\)
- \(\hat{G}=\{1,\chi\}\)\[\chi(a)=\left(\frac{-4}{a}\right)=\left(\frac{-1}{a}\right)\]
- \(1\in \hat{G}\)의 conductor는 1
- \(\chi\in\hat{G}\)의 conductor는 4
- 따라서 제타함수의 분해는 다음과 같음
\[\zeta_{K}(s)=\zeta(s)L(\chi,s)\]
역사
메모
- http://www.springerlink.com/content/q8m1181vwp429788/fulltext.pdf section 10.5.4
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들