"등차수열의 소수분포에 관한 디리클레 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3154692">정수론의 주제들</a>페이지로 이동하였습니다.)
13번째 줄: 13번째 줄:
 
 
 
 
  
<h5>증명의 아이디어</h5>
+
<h5>증명의 재료</h5>
  
푸리에 해석과 L-
+
* 푸리에 해석(군표현론) 과 L-function
  
 
 
 
 
 +
 +
 
 +
 +
<h5>군표현론</h5>
 +
 +
* <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 유한생성아벨군의 기본정리에 의하여, 순환군의 곱으로 분해할 수 있음.
  
 
 
 
 
72번째 줄: 78번째 줄:
 
<h5>관련도서 및 추천도서</h5>
 
<h5>관련도서 및 추천도서</h5>
  
 +
* [http://www.amazon.com/Introduction-Analytic-Number-Undergraduate-Mathematics/dp/0387901639 Introduction to Analytic Number Theory] (Undergraduate Texts in Mathematics)<br>
 +
** Tom M. Apostol
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=

2009년 4월 16일 (목) 17:21 판

간단한 소개

(정리) 디리클레, 1837

   자연수 a, b 가 서로 소이면 등차수열 {an+b} (n=0,1,2,…) 는 무한히 많은 소수를 포함한다

  • 4로 나눈 나머지가 1인 소수는 무한히 많다
  • 7로 나눈 나머지가 5인 소수는 무한히 많다
  •  h 와 k 가 서로 소일 때, h로 나눠서 k가 남는 소수는 무한히 많다.

 

 

증명의 재료
  • 푸리에 해석(군표현론) 과 L-function

 

 

군표현론
  • \((\mathbb{Z}/n\mathbb{Z})^\times\)는 유한생성아벨군의 기본정리에 의하여, 순환군의 곱으로 분해할 수 있음.

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상