"라마누잔과 파이"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
11번째 줄: 11번째 줄:
  
  
 
+
<h5>라마누잔의 class invariants</h5>
 
 
<h5>하위주제들</h5>
 
  
 
+
* [[라마누잔의 class invariants]]
 
+
* <math>g_{58}^2=\frac{\sqrt{29}+5}{2}</math>
 
 
 
 
 
 
 
 
==== 하위페이지 ====
 
 
 
* [[1964250|0 토픽용템플릿]]<br>
 
** [[2060652|0 상위주제템플릿]]<br>
 
  
 
 
 
 
32번째 줄: 22번째 줄:
 
<h5>재미있는 사실</h5>
 
<h5>재미있는 사실</h5>
  
*  
+
* <math>e^{\sqrt{58}\pi}=24591257751.999999822\cdots</math>
 
 
 
 
 
 
<h5>관련된 단원</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5>많이 나오는 질문</h5>
 
  
*  네이버 지식인<br>
+
<br>
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
  
 
<h5>관련된 고교수학 또는 대학수학</h5>
 
<h5>관련된 고교수학 또는 대학수학</h5>
132번째 줄: 109번째 줄:
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
  
 
+
<br>
 
 
<h5>이미지 검색</h5>
 
 
 
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 
* http://images.google.com/images?q=
 
* [http://www.artchive.com/ http://www.artchive.com]
 
 
 
 
 
 
 
<h5>동영상</h5>
 
 
 
* http://www.youtube.com/results?search_type=&search_query=
 

2009년 8월 13일 (목) 23:50 판

간단한 소개
\(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)

 

\[\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\]

 


라마누잔의 class invariants

 

 

재미있는 사실
  • \(e^{\sqrt{58}\pi}=24591257751.999999822\cdots\)


관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

[1]

 

관련기사

 

 

블로그