"무리수와 디오판투스 근사"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 무리수와 디오판투스 근사로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">디리클레 근사정리(Dirichlet's approximation theorem)</h5> | ||
+ | |||
+ | * [[search?q=%EB%94%94%EB%A6%AC%ED%81%B4%EB%A0%88%20%EA%B7%BC%EC%82%AC%EC%A0%95%EB%A6%AC(Dirichlet's%20approximation%20theorem)&parent id=3622851|디리클레 근사정리(Dirichlet's approximation theorem)]] 에서 가져옴<br> 무리수 <math>\alpha</math> 에 대하여, 부등식<br> | ||
+ | |||
+ | <math>|\alpha-\frac{p}{q}|<\frac{1}{q^2}</math> | ||
+ | |||
+ | 는 무한히 많은 유리수 <math>p/q</math>에 의하여 만족된다. | ||
+ | |||
+ | * 더 나아가 다음이 성립한다<br> <br> 무리수 <math>\alpha</math> 에 대하여, 부등식<br><math>|\frac{p}{q}-\alpha|<\frac{1}{\sqrt{5}{q^2}}</math><br> 는 무한히 많은 유리수<math>p/q</math> 에 의하여 만족된다. (하지만 여기서 <math>\sqrt{5}</math> 는 더 큰 수로 대체될 수 없다.)<br> | ||
+ | * [[연분수와 유리수 근사|연분수]] 항목 참조<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">리우빌 정리</h5> | ||
+ | |||
+ | 무리수이면서 차수가 d인 대수적수 <math>\alpha</math> 에 대하여, 적당한 상수 <math>A>0</math>가 존재하여, 모든 유리수 <math>p/q</math>에 대하여 다음 부등식이 만족된다. | ||
+ | |||
+ | <math> \vert \alpha - \frac{p}{q} \vert > \frac{A}{q^{d}}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Thue-Siegel-Roth 정리</h5> | ||
+ | |||
+ | 주어진 <math>\epsilon}>0</math>에 대하여, 무리수이면서 대수적인수 <math>\alpha</math> 에 대하여, 부등식 | ||
+ | |||
+ | <math>\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{2 + \epsilon}}</math> | ||
+ | |||
+ | 의 유리수해 <math>p/q</math>는 유한하다 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * Math Overflow http://mathoverflow.net/search?q= | ||
+ | * 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5> | ||
+ | |||
+ | * [[황금비]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5> | ||
+ | |||
+ | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/Diophantine_approximation | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
+ | ** http://www.research.att.com/~njas/sequences/?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5> | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] | ||
+ | * [http://betterexplained.com/ BetterExplained] |
2010년 7월 28일 (수) 14:13 판
이 항목의 스프링노트 원문주소
개요
디리클레 근사정리(Dirichlet's approximation theorem)
- 디리클레 근사정리(Dirichlet's approximation theorem) 에서 가져옴
무리수 \(\alpha\) 에 대하여, 부등식
\(|\alpha-\frac{p}{q}|<\frac{1}{q^2}\)
는 무한히 많은 유리수 \(p/q\)에 의하여 만족된다.
- 더 나아가 다음이 성립한다
무리수 \(\alpha\) 에 대하여, 부등식
\(|\frac{p}{q}-\alpha|<\frac{1}{\sqrt{5}{q^2}}\)
는 무한히 많은 유리수\(p/q\) 에 의하여 만족된다. (하지만 여기서 \(\sqrt{5}\) 는 더 큰 수로 대체될 수 없다.) - 연분수 항목 참조
리우빌 정리
무리수이면서 차수가 d인 대수적수 \(\alpha\) 에 대하여, 적당한 상수 \(A>0\)가 존재하여, 모든 유리수 \(p/q\)에 대하여 다음 부등식이 만족된다.
\( \vert \alpha - \frac{p}{q} \vert > \frac{A}{q^{d}}\)
Thue-Siegel-Roth 정리
주어진 \(\epsilon}>0\)에 대하여, 무리수이면서 대수적인수 \(\alpha\) 에 대하여, 부등식
\(\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{2 + \epsilon}}\)
의 유리수해 \(p/q\)는 유한하다
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Diophantine_approximation
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)