"미디의 정리(Midy's theorem)"의 두 판 사이의 차이
141번째 줄: | 141번째 줄: | ||
<h5>매스매티카 파일 및 계산 리소스</h5> | <h5>매스매티카 파일 및 계산 리소스</h5> | ||
− | * | + | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxYWNhZDQwN2MtNjMyMS00ZDc2LTgzZTQtMzFmMTQxYWFmZWM0&sort=name&layout=list&num=50 |
* http://demonstrations.wolfram.com/FractionalGraphsAndFlowers/ | * http://demonstrations.wolfram.com/FractionalGraphsAndFlowers/ | ||
2011년 12월 9일 (금) 15:28 판
이 항목의 수학노트 원문주소
개요
- '142857의 신비'에서처럼 142857과 같은 수를 적당한 자리마다 쪼개어 더했을때 9가 많이 나타나는 현상에 대한 일반적인 이해
- 1+8=4+5=2+7=9
- 142 + 857=999
- 428 + 571=999
- 285 + 714=999
- 857 + 142=999
- 571 + 248=999
- 712 + 485=999
- 14+28+57=99
- 42+85+71=198=2*99
- 대부분의 성질은 순환군 을 통하여 이해할 수 있다
- 더 구체적으로는 Z_p^{x} 에서 10^k 꼴의 원소로 생성되는 부분군과 그 coset 의 원소들의 합을 구하는 문제이다
순환마디의 길이가 2의 배수일때
- 소수 p에 대하여, 분수 a/p (\(1\leq a \leq p-1\)) 를 십진법 전개할 때 얻어지는 순환마디의 길이가 2n 이고, 순환마디가 \(a_1a_2\cdots a_{n} a_{n+1}a_{n+2}\cdots a_{2n}\) 라 하자.
\(1\leq i \leq n\) 에 대하여, \(a_{i} + a_{i+n}=9\) 이 성립한다.
또한 \(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} = 99\cdots 99\)(n개의 9) 가 성립한다.
(증명)
분수 a/p (\(1\leq a \leq p-1\)) 를 생각하자.
\(g_k \equiv a10^k \pmod p\), \(1\leq g_k \leq p-1\) 라 정의하자. \(g_0=a\) 이다.
순환마디의 길이가 2n이면, \(10^n \equiv -1 \pmod p\) 가 성립하므로, \(g_n=p-a\) 임을 안다.
\(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n}=\frac{g_0 10^n-g_n}{p} + \frac{g_{n} 10^n-g_0}{p}=\frac{(g_0+g_n)(10^n-1)}{p}=10^n-1\) ■
예 : 1176470588235294
- p=17
- 2/17 = 0.11764705882352941176470588235294...
- 11764705 + 88235294 = 99999999
순환마디의 길이가 3의 배수일 때
- 소수 p에 대하여, 분수 1/p 를 십진법 전개할 때 얻어지는 순환마디의 길이가 3n 이고, 순환마디가 \(a_1a_2\cdots a_{n} a_{n+1}a_{n+2}\cdots a_{2n}a_{2n+1}a_{2n+2}\cdots a_{3n}\) 라 하자.
\(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} +a_{2n+1}a_{2n+2}\cdots a_{3n}= 99\cdots 99\) 가 성립한다
(증명)
순환마디의 길이가 3n인 분수 1/p 를 생각하자.
\(g_k \equiv 10^k \pmod p\), \(0\leq g_k \leq p-1\) 라 정의하자. \(g_0=1\) 이다.
\(g_{2n} \equiv g_n^2 \pmod p\), \(g_n^3 \equiv 1 \pmod p\) 이므로, \(g_0+g_n+g_{2n}\equiv 1+g_n+g_n^2=(g_n^3-1)/(g_n-1)\equiv 0 \pmod p\) 이다.
따라서 \(g_0+g_n+g_{2n}=p\) 또는 \(g_0+g_n+g_{2n}=2p\)가 성립한다.
그러나 \(1\leq g_k \leq p-1\) 이므로 \(1+g_n+g_{2n}=2p\)일 수 없다. 따라서 \(g_0+g_n+g_{2n}=p\)
\(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} +a_{2n+1}a_{2n+2}\cdots a_{3n}=\frac{g_0 10^n-g_n}{p} + \frac{g_{n} 10^n-g_{2n}}{p}+\frac{g_{2n} 10^n-g_{0}}{p}=\frac{(g_0+g_n+g_{2n})(10^n-1)}{p}=10^n-1\) ■
- 일반적으로 소수 p에 대하여, 분수 1/p 를 십진법 전개할 때 얻어지는 순환마디의 길이가 3n 이라고 하자.
분수 a/p (\(1\leq a \leq p-1\)) 또는 (p-a)/p (\(1\leq a \leq p-1\)) 의 순환소수전개를 생각하자.
둘 중의 하나는 \(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} +a_{2n+1}a_{2n+2}\cdots a_{3n}= 99\cdots 99\)
다른 하나는, \(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} +a_{2n+1}a_{2n+2}\cdots a_{3n}=2* 99\cdots 99\) 를 만족한다
예 : 052631578947368421
- p=19
- 1/19=0.052631578947368421052...
- 52631+578947+368421=999999
- 1/19=0.052631578947368421052...
- p=7
- 3/7 = 0.4285714286...
- 42+ 85+71=198
- 4/7 = 0.5714285714
- 57+14+28=99
- 3/7 = 0.4285714286...
역사
메모
관련된 항목들
수학용어번역
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxYWNhZDQwN2MtNjMyMS00ZDc2LTgzZTQtMzFmMTQxYWFmZWM0&sort=name&layout=list&num=50
- http://demonstrations.wolfram.com/FractionalGraphsAndFlowers/
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Midy's_theorem
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
- A Curious String of Nines
- Hans Liebeck,
- The Mathematical Gazette, Vol. 85, No. 504 (Nov., 2001), pp. 431-438
관련논문
- Lewittes, Joseph. 2006. “Midy’s Theorem for Periodic Decimals”. math/0605182 (5월 7). http://arxiv.org/abs/math/0605182
- A. Gupta and B. Sury, Decimal expansion of 1/p and subgroup sums, Integers: Electronic Journal Of Combinatorial Number Theory 5 (2005),
- Brian D. Ginsberg Midy's (Nearly) Secret Theorem: An Extension after 165 Years, The College Mathematics Journal, Vol. 35, No. 1 (Jan., 2004), pp. 26-30
- M. Shrader-Frechette, Complementary Rational Numbers, Math. Mag., 51 (1978) 90–98.
- E. Midy, De quelques proprietes des nombres et des fractions decimals periodiques, Nantes, (1836), 21 pages.
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/