"볼록다면체에 대한 데카르트 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
99번째 줄: 99번째 줄:
  
 
  (오일러의 정리가 사용되었음)
 
  (오일러의 정리가 사용되었음)
 +
 +
 
 +
 +
<h5>하위주제들</h5>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
==== 하위페이지 ====
 +
 +
* [[1964250|0 토픽용템플릿]]<br>
 +
** [[2060652|0 상위주제템플릿]]<br>
 +
 +
 
  
 
 
 
 
132번째 줄: 149번째 줄:
  
 
그러므로 축구공에는 점이 60개 있음.
 
그러므로 축구공에는 점이 60개 있음.
 
<h5>관련된 단원</h5>
 
 
 
 
 
 
 
 
<h5>관련된 다른 주제들</h5>
 
 
* [[다면체에 대한 오일러의 정리 V-E+F=2]]
 
 
 
 
 
<h5>관련도서 및 추천도서</h5>
 
 
* [http://www.amazon.com/Eulers-Gem-Polyhedron-Formula-Topology/dp/0691126771 Euler's Gem: The Polyhedron Formula and the Birth of Topology]<br>
 
** David S. Richeson
 
** 일반적인 독자를 위한 책이나 학부생이 읽어도 좋을듯.
 
*   <br>[http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/handouts.html Geometry and the Imagination in Minneapolis]<br>
 
** John Conway, Peter Doyle, Jane Gilman, Bill Thurston
 
** This document consists of the collection of handouts for a two-week summer workshop entitled 'Geometry and the Imagination', led by John Conway, Peter Doyle, Jane Gilman and Bill Thurston at the Geometry Center in Minneapolis, June 17-28, 1991. The workshop was based on a course `Geometry and the Imagination' which we had taught twice before at Princeton.
 
** [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/node18.html#SECTION000180000000000000000 The angle defect of a polyhedron]
 
** [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/node19.html#SECTION000190000000000000000 Descartes's Formula.]
 
 
 
 
 
<h5>관련된 고교수학 또는 대학수학</h5>
 
 
* [[미분기하학]]
 
* [[대수적위상수학]]<br>  <br>
 
 
 
 
 
<h5>간단한 소개</h5>
 
 
 
 
 
 
 
 
<h5>하위주제들</h5>
 
 
 
 
 
 
 
 
 
 
 
==== 하위페이지 ====
 
 
* [[1964250|0 토픽용템플릿]]<br>
 
** [[2060652|0 상위주제템플릿]]<br>
 
 
 
 
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
 
  
 
 
 
 
209번째 줄: 167번째 줄:
 
<h5>관련된 고교수학 또는 대학수학</h5>
 
<h5>관련된 고교수학 또는 대학수학</h5>
  
 
+
* [[미분기하학]]
 +
* [[대수적위상수학]]<br>
  
 
 
 
 
215번째 줄: 174번째 줄:
 
<h5>관련된 다른 주제들</h5>
 
<h5>관련된 다른 주제들</h5>
  
 
+
* [[다면체에 대한 오일러의 정리 V-E+F=2]]
  
 
 
 
 
221번째 줄: 180번째 줄:
 
<h5>관련도서 및 추천도서</h5>
 
<h5>관련도서 및 추천도서</h5>
  
 +
* [http://www.amazon.com/Eulers-Gem-Polyhedron-Formula-Topology/dp/0691126771 Euler's Gem: The Polyhedron Formula and the Birth of Topology]<br>
 +
** David S. Richeson
 +
** 일반적인 독자를 위한 책이나 학부생이 읽어도 좋을듯.
 +
* [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/handouts.html Geometry and the Imagination in Minneapolis]<br>
 +
** John Conway, Peter Doyle, Jane Gilman, Bill Thurston
 +
** This document consists of the collection of handouts for a two-week summer workshop entitled 'Geometry and the Imagination', led by John Conway, Peter Doyle, Jane Gilman and Bill Thurston at the Geometry Center in Minneapolis, June 17-28, 1991. The workshop was based on a course `Geometry and the Imagination' which we had taught twice before at Princeton.
 +
** [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/node18.html#SECTION000180000000000000000 The angle defect of a polyhedron]
 +
** [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/node19.html#SECTION000190000000000000000 Descartes's Formula.]
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
238번째 줄: 205번째 줄:
 
 
 
 
  
<h5> </h5>
+
 
 
 
* [http://bomber0.byus.net/index.php/2008/01/09/510 다면체에 대한 데카르트-오일러 정리]<br>
 
** 피타고라스의 창
 
  
 
<h5>관련기사</h5>
 
<h5>관련기사</h5>
247번째 줄: 211번째 줄:
 
네이버 뉴스 검색 (키워드 수정)
 
네이버 뉴스 검색 (키워드 수정)
  
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
* [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%A0%95%EB%8B%A4%EB%A9%B4%EC%B2%B4 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=정다면체]
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
  
256번째 줄: 220번째 줄:
 
<h5>블로그</h5>
 
<h5>블로그</h5>
  
 +
* [http://bomber0.byus.net/index.php/2008/01/09/510 다면체에 대한 데카르트-오일러 정리]<br>
 +
** 피타고라스의 창
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=

2009년 3월 29일 (일) 10:44 판

간단한 소개
  • 다각형의 모양에 상관없이 그 외각의 합은 \(2\pi\).

    위의 그림에서 a,b,c,d,e가 각 점의 외각의 크기.
    이를 다 합하면 \(2\pi\)가 됨.
  • 다면체에 대해서도 비슷한 정리가 성립하며, 이를 다면체에 대한 데카르트 정리라고 부름
  • 다면체의 한 점에서의 외각
    • 정의 \[2\pi\] - (한 점에 모여있는 다각형들의 그 점에서의 각의 합)
    • 다음 표를 통해, 그 예를 볼 수 있음.
다면체 그림 V E F V-E+F 한점에서의 외각 A 외각의 총합 V × A
정사면체 [[|Tetrahedron]] 4 6 4 4-6+4=2 \(2\pi-3\times\frac{\pi}{3}=\pi\) \(4\times\pi=4\pi\)
정육면체 [[|Hexahedron (cube)]] 8 12 6 8-12+6=2 \(2\pi-3\times\frac{\pi}{2}=\frac{\pi}{2}\) \(8\times\frac{\pi}{2}=4\pi\)
정팔면체 [[|Octahedron]] 6 12 8 6-12+8=2 \(2\pi-4\times\frac{\pi}{3}=\frac{2\pi}{3}\) \(6\times\frac{2\pi}{3}=4\pi\)
정십이면체 [[|Dodecahedron]] 20 30 12 20-30+12=2 \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\) \(20\times\frac{\pi}{5}=4\pi\)
정이십면체 [[|Icosahedron]] 12 30 20 12-30+20=2 \(2\pi-5\times\frac{\pi}{3}=\frac{\pi}{3}\) \(12\times\frac{\pi}{3}=4\pi\)
  • 데카르트의 정리는 다면체의 각 점에서의 외각의 총합이 \(4\pi\) 라는 것.
  • 증명

다면체의 점, 선, 면의 개수를 각각 V,E,F 라고 하자.

 

각 점에서의 외각의 총합



이제,  를 다면체에 있는 k-각형의 개수라 하자.

k각형의 내각의 합은 이므로, 위의 식은 다음과 같아진다.

 



여기서 가 성립하는데, 이는 각 변이 두번씩 세어지기 때문이다. 따라서 위의 식은

 


(오일러의 정리가 사용되었음)

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실
  • 정십이면체의 점의 개수를 세는 경우의 응용.


점의 개수를 세지말고, 한 점에 정오각형이 세 개 모여있다는 것을 확인

정오각형의 한 점의 내각의 크기가 \(\frac{3\pi}{5}\)

한 점에서의 외각이 \(\frac{\pi}{5}\) 가 된다는 것을 알수 있음.

데카르트의 정리에 의해  \(4\pi\) 를 이 숫자로 나누면 점의 개수 20을 얻게 됨.

 

  • 데카르트의 정리는 위상적인 성질을 반영하는 것이기 때문에, 사실은 꼭 정다면체뿐만이 아니라, 축구공과 같은 일반적인 (볼록)다면체에서도 성립함.
  • 축구공의 점의 개수를 세는 데 응용

모든 점이 똑같이 생겼다는 사실을 확인.

한 점에는 정오각형 하나, 정육각형 두개가 만나고 있다는 사실을 재빠르게 간파한 다음,

정오각형 한점 내각 = 108도, 정육각형 한점 내각 = 120도

따라서 축구공 한 점에서의 외각 크기 = 360도 -108도 -120도 -120도 = 12도

데카르트 정리를 이용하여 \(4\pi \div 12\)도 \( = 720 \div 12 = 60\)

그러므로 축구공에는 점이 60개 있음.

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상