"삼각함수에는 왜 공식이 많은가?"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
*  사인과 코사인은 원을 매개화하는 함수<br>
+
*  사인과 코사인은 단위원을 매개화하는 함수<br>
 
** <math>\cos^2\theta+\sin^2\theta=1</math>
 
** <math>\cos^2\theta+\sin^2\theta=1</math>
원은 군의 구조를 가짐. ([[군론(group theory)]])<br>
+
단위원은 군의 구조를 가짐. ([[군론(group theory)]])<br>
 
** <math>e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}</math>
 
** <math>e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}</math>
* 삼각함수의 많은 공식들은 이 원이 가진 군의 구조를 통하여 이해할 수 있음
+
* 삼각함수의 많은 공식들은 이 단위원이 가진 군의 구조를 통하여 이해할 수 있음
 
* 회전변환이 가진 군의 구조로 이해할 수도 있음
 
* 회전변환이 가진 군의 구조로 이해할 수도 있음
* 비슷한 예로 [[타원함수]]와 [[자코비 세타함수]]의 많은 공식들은 [[타원곡선]]이 가지는 군의 구조를 이용하여 이해할 수 있음
+
* 비슷한 예로 [[타원함수]] 또는 [[자코비 세타함수]]의 많은 공식들은 [[타원곡선]]이 가지는 군의 구조를 이용하여 이해할 수 있음
  
 
 
 
 
24번째 줄: 24번째 줄:
  
 
* [[삼각함수]] 항목 참조<br><math>\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \</math><br><math>\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta\</math><br>
 
* [[삼각함수]] 항목 참조<br><math>\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \</math><br><math>\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta\</math><br>
 +
 +
 
  
 
 
 
 
29번째 줄: 31번째 줄:
 
<h5>복소지수함수</h5>
 
<h5>복소지수함수</h5>
  
*  삼각함수의 덧셈공식은 복소지수함수 <math>f(x)=e^{ix}=\cos x+ i\sin x</math>의 성질 <math>e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}</math>과 같다<br><math>e^{i\theta}e^{i\phi}=(\cos \theta+ i\sin \theta)(\cos \phi+i\sin \phi)=(\cos \theta \cos \phi - \sin \theta \sin \phi)+i(\sin \theta \cos \phi + \cos \theta \sin \phi )</math><br><math>e^{i(\theta+\phi)}=\cos (\theta+\phi)+i \sin (\theta+\phi)</math><br> 여기서 양변의 실수부와 허수부를 비교하면, 삼각함수의 덧셈공식을 <br>
+
*  삼각함수의 덧셈공식은 복소지수함수 <math>f(x)=e^{ix}=\cos x+ i\sin x</math>의 성질 <math>e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}</math>과 같다<br><math>e^{i\theta}e^{i\phi}=(\cos \theta+ i\sin \theta)(\cos \phi+i\sin \phi)=(\cos \theta \cos \phi - \sin \theta \sin \phi)+i(\sin \theta \cos \phi + \cos \theta \sin \phi )</math><br><math>e^{i(\theta+\phi)}=\cos (\theta+\phi)+i \sin (\theta+\phi)</math><br> 여기서 양변의 실수부와 허수부를 비교하면, 삼각함수의 덧셈공식을 얻는다<br>
 +
* 복소지수함수의 성질 <math>e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}</math> 은 단위원에 군의 구조를 준다
 +
* [[오일러의 공식 e^{iπ}+1=0]]  항목 참조
 +
 
 +
 
  
 
 
 
 
38번째 줄: 44번째 줄:
 
* <math>\theta_1</math>과 <math>\theta_2</math> 만큼 회전시키는 두 회전변환을 합성하면, <math>\theta_1+\theta_2</math> 만큼 회전시키는 또다른 회전변환을 하나 얻게 되는데, 이로부터 덧셈공식을 얻을 수 있다<br><math>\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}</math><br>
 
* <math>\theta_1</math>과 <math>\theta_2</math> 만큼 회전시키는 두 회전변환을 합성하면, <math>\theta_1+\theta_2</math> 만큼 회전시키는 또다른 회전변환을 하나 얻게 되는데, 이로부터 덧셈공식을 얻을 수 있다<br><math>\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}</math><br>
 
* 회전변환이 군의 구조를 갖기 때문에 나타나는 성질이다
 
* 회전변환이 군의 구조를 갖기 때문에 나타나는 성질이다
 +
* 단위원과 평면의 회전변환 군은 군론의 입장에서 같다
  
 
 
 
 
56번째 줄: 63번째 줄:
 
* [[삼각함수의 일반화]]
 
* [[삼각함수의 일반화]]
 
* [[자코비 세타함수]]
 
* [[자코비 세타함수]]
 +
* [[#]]
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  

2010년 5월 27일 (목) 11:34 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 사인과 코사인은 단위원을 매개화하는 함수
    • \(\cos^2\theta+\sin^2\theta=1\)
  • 단위원은 군의 구조를 가짐. (군론(group theory))
    • \(e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}\)
  • 삼각함수의 많은 공식들은 이 단위원이 가진 군의 구조를 통하여 이해할 수 있음
  • 회전변환이 가진 군의 구조로 이해할 수도 있음
  • 비슷한 예로 타원함수 또는 자코비 세타함수의 많은 공식들은 타원곡선이 가지는 군의 구조를 이용하여 이해할 수 있음

 

 

덧셈공식
  • 삼각함수 항목 참조
    \(\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\)
    \(\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta\\)

 

 

복소지수함수
  • 삼각함수의 덧셈공식은 복소지수함수 \(f(x)=e^{ix}=\cos x+ i\sin x\)의 성질 \(e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}\)과 같다
    \(e^{i\theta}e^{i\phi}=(\cos \theta+ i\sin \theta)(\cos \phi+i\sin \phi)=(\cos \theta \cos \phi - \sin \theta \sin \phi)+i(\sin \theta \cos \phi + \cos \theta \sin \phi )\)
    \(e^{i(\theta+\phi)}=\cos (\theta+\phi)+i \sin (\theta+\phi)\)
    여기서 양변의 실수부와 허수부를 비교하면, 삼각함수의 덧셈공식을 얻는다
  • 복소지수함수의 성질 \(e^{i\theta}e^{i\phi}=e^{i(\theta+\phi)}\) 은 단위원에 군의 구조를 준다
  • [[오일러의 공식 e^{iπ}+1=0]]  항목 참조

 

 

회전변환을 통한 이해
  • 평면에서 원점을 중심으로 각도 \(\theta \) 만큼의 회전변환은 다음 행렬로 표현된다
    \(\begin{pmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}\)
  • \(\theta_1\)과 \(\theta_2\) 만큼 회전시키는 두 회전변환을 합성하면, \(\theta_1+\theta_2\) 만큼 회전시키는 또다른 회전변환을 하나 얻게 되는데, 이로부터 덧셈공식을 얻을 수 있다
    \(\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}\)
  • 회전변환이 군의 구조를 갖기 때문에 나타나는 성질이다
  • 단위원과 평면의 회전변환 군은 군론의 입장에서 같다

 

 

타원함수의 경우

 

 

관련된 항목들

 

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그